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Abstract

Pure states are an important resource in many quantum information processing protocols. However, even mak-
ing a fixed pure state, say |0⟩, in the laboratory requires a considerable amount of effort. Often one ends up with
a mixed state ρ whose classical description is nevertheless known. Hence it is important to develop protocols that
extract a fixed pure state from a known mixed state. In this work, we study the problem of extracting a fixed pure
state |0⟩A

′
|0⟩B

′
from a known pure state ρAB distributed between two partiesA andB. Here, A′, B′ are subspaces

of A, B and the total amount of purity extracted is log |A′| + log |B′|. The parties can borrow local pure ancilla,
apply local unitary operations and send a message from A to B through a dephasing channel. If local pure ancilla
is borrowed, it must be subtracted in order to properly account for the purity extracted. We obtain the most efficient
achievable bounds on one shot distributed purity extraction, in terms of the rate of local ancilla borrowed by the
protocol, while distilling pure qubits at the best known rate. Our protocols borrow little to no local pure ancilla. Our
bounds improve upon the existing bounds for this problem in both one shot as well as asymptotic iid settings. In
particular they subsume all the asymptotic iid results of Devetak and Krovi-Devetak. In addition, we derive upper
bounds for the rate of distillation in the one shot setting, which nearly match our achievable bounds.

1 Introduction

Pure states are an important and ubiquitous resource in most quantum information processing protocols. Often, while
implementing a quantum algorithm, one assumes the availability of pure states in the form of ancilla qubits which
can be used as workspace for some computational operation. A specific example of this is the implementation of
isometric operators as quantum gates in a circuit. Due to their widespread use, pure states are often assumed to be a
freely available resource in most quantum information processing protocols. However, the question remains as to the
cost one has to incur to prepare such pure states in the lab. Indeed, that this is a nontrivial operation was realised by
Landauer [14], who showed that to initialise an arbitrary classical bit to some preset value, an operation called erasure,
one has to do work. Along a similar vein, the works of Bennett et al. and Szilard [1, 18] prove that one can extract
work from a thermal bath if the system is initialised to a pure state.

The above works underscore the importance of characterising the resources that are necessary to produce pure
states in the lab. To that end, we consider the problem of purity distillation and give an informal introduction below.

An Informal Description of Purity Distillation

The problem of purity distillation is concerned with characterising the rate at which pure qubit states can be obtained
from a given known input state, using certain admissible quantum operations. To that end, we first require a measure
of purity of a given known state, and a list of allowable operations under which our chosen measure of purity does

*A preliminary version of this work appeared at the 2023 59th Annual Allerton Conference on Communication, Control, and Computing
[4]
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not increase. For a given state ρA, a good choice for the measure of purity found in the literature [15, 8, 17] is the
following:

log |A| − H̃(A),

where H̃(·) is a placeholder for a well defined notion of entropy of a state which is suitable for our purposes. A list of
allowable operations then takes the following form:

1. Tracing out a subsystem.

2. Appending a maximally mixed state in some register Amix, i.e. we allow access to private randomness.

3. A special class of quantum operations {N}.

The special class of quantum operations depends on the generality in which one wishes to treat the theory of
purity distillation, and different authors have used increasing larger sets of operations in their treatment of the topic
(see [17]). What is important is that the measure of purity should be non-increasing under these sets of operations.

Looking ahead, one can add a further allowable operation to the above list, that of borrowing pure ancilla qubits
locally in some register Cpure. However, since this clearly increases the measure of purity, one must account for this by
modifying the formula of the measure of purity by the term − log

∣∣Cpure
∣∣. We refer to this as operation as ‘borrowing

pure ancilla qubits in a catalytic manner’.
Given the above setting, we can now define the tasks of local and distributed purity distillation:

Local Purity Distillation : Given a quantum state ρA, a party Alice can use any finite sequence of operations from
the list of allowed operations to produce a state σAp , such that:∥∥∥σAp − |0⟩ ⟨0|Ap

∥∥∥
1
≤ ε,

for some error parameter ε. The goal is to maximise log |Ap|.

Distributed Purity Distillation : Given a quantum state ρAB , where the party Alice has access to the system A and
the party Bob has access to the system B, and a completely dephasing channel PXA→XB from Alice to Bob, the
parties are can use any finite sequence of local allowable operations, together with one classical message from Alice
to Bob via the completely dephasing channel, to produce a joint state σApBp , such that:∥∥∥σApBp − |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp

∥∥∥
1
≤ ε,

for some error parameter ε. The goal is to maximise log |Ap|+ log |Bp|.
A further generalisation of the task of distributed purity distillation (DPD) is when we also charge for the amount

of classical communication from Alice to Bob. To that end, we consider (informally) the following task:

DPD with Bounded Classical Communication : Given the setting of DPD, the goal is to maximise the quantity
log |Ap|+ log |Bp| with the additional constraint that the number of classical bits that Alice is allowed to send to Bob
is at most Cclassical.

We will now make some remarks regarding the choice of special quantum operations in the set of allowable
operations. From an informal perspective, it would seem logical that one should only allow local unitary operations
in the set of special quantum operations {N}. This is because any other quantum operation would require additional
ancilla qubits to be implemented in the lab using quantum circuits. Nevertheless, one may ask whether the set of
special quantum operations may be enlarged from the set of unitary operators, to include maps which do not increase
the measure of purity of the input state. Note that if one is allowed to include any such non-unitary map in the set
{N}, its use will be free, in the sense we will not charge for the number of ancilla qubits required to implement this
map as a quantum circuit. Indeed, this topic has been studied in the works [8, 17], where the authors show that their
choice of purity measure does not increase under the action of unital CPTP maps.
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However, the choice of {N} in this paper is more restrictive and informed by a distinction between the tasks of
local and distributed purity distillation. To see this distinction, note that one must allow some communication channel
from Alice to Bob in the distributed setting. If not, then the best the parties can do is two locally optimal protocols on
their systems A and B. The quantum operator used as the communication channel must be a member of the set {N}.
However, the choice of this channel cannot be an arbitrary operator from {N}. For example, if one allows the identity
superoperator on the system A, which is a unital CPTP map, to be used as a channel, Alice can then send her entire
system A to Bob This trivially reduces the distributed distillation problem to the local distillation problem. Thus, we
must fix a choice of channel in the distributed case.

A judicious choice of channel is a classical communication channel from Alice to Bob, modelled by the com-
pletely dephasing map PXA→XB . Informally, we do not allow Alice to send any entangled bits to Bob, but allow
classical communication. Note that this map is also a unital CPTP. This choice can be justified from a practical
perspective as well, given that robust quantum channels across large distances have not yet been realised.

Given the above discussion, throughout this paper we will fix our set of special operations {N} to include only
unitary operators and completely dephasing maps. In addition, as pointed out above, we allow partial trace, completely
mixed ancilla and borrowing local pure ancilla catalytically. We will show that our choice of purity measure is non-
increasing under the set of allowable operations which we choose to work with. In fact the same set of operations
were allowed by the earlier works of [6, 13]. The reader is referred to Sections 3 and 4 for the rigorous definitions and
lemmas pertaining to the discussion above.

Remark 1.1. We remark that our choice of purity measure is non-increasing even under the action of unital CPTP
maps. This is easily seen from the proofs presented in Section 4. However, we do not comment on this further to
focus on the main contribution of this paper.

History and Previous Works

The problems of local and distributed purity distillation first appeared in the works [15, 10, 11]. Specifically, the
distributed distillation problem was first introduced in the asymptotic iid setting [15], and some preliminary bounds
for the case when both 1-way and 2-way communication is allowed between Alice and Bob was given in [10] in the
CLOCC (closed local operations and classical communication) setting in the asymptotic iid regime. In this setting the
parties are not allowed to borrow any ancilla qubits catalytically, nor do they have access to private randomness. This
implies that for an input state ρA, the set of operations {N} are allowed to be only unitary operators on A along with
completely dephasing maps.

A further generalisation of this setting where the parties have access to private randomness, abbreviated as NLOCC
(noisy local operations and classical communication) was also considered in [10]. In this case one allows local
unitaries to act on both the input register as well as the system which holds the completely mixed state. The set of
quantum operations {N} is clearly larger in this case than CLOCC, since one can construct operations on the input
register which are convex combinations of unitary operators. However, this model still does not allow the parties to
borrow ancilla qubits catalytically. A tight lower bound for the local distillation problem was provided in [12], in the
asymptotic iid setting.

Aside from the preliminary works mentioned above, the first detailed treatment for the purity distillation problem
appeared in the work of Devetak [6]. Devetak was the first to introduce the idea of borrowing pure ancilla in a catalytic
manner, formalised as the CLOCC′ paradigm. In this paradigm one is allowed to borrow pure local ancilla qubits, but
has to discount them from the final expression for number of pure qubits distilled. This relaxation allowed Devetak to
characterise the rate of distributed purity distillation, when unbounded one-way classical communication is allowed.
In particular, Devetak showed that, given n iid copies of a bipartite state ρAB , where A and B are shared between two
parties, and unbounded one-way classical communication, it is possible to distil pure qubits at (roughly) a rate:

log |A| −H(A) + log |B| −H(B) +
1

n
max
Λn

I(Xn : Bn) (1)

for a large enough n, where Λn is a rank-1 POVM that acts on the system An to produce a classical register Xn. It
was also shown in the same paper that in the case of unbounded classical communication, this bound is tight in the iid
limit.
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The reader may have guessed that the additive mutual information term appearing in the expression above con-
tributes a surplus of pure distillable qubits, more so than what a naïve application of two local protocols on the A and
B systems would have allowed. As we shall see shortly, these surplus pure qubits are distilled by using the classical-
quantum correlations between the two systems A and B (see [7] for more details). These correlations are extracted
during the protocol execution by using the POVM Λn. Since the mutual information quantity above is maximised by
rank-1 POVM, Devetak only considers these and indeed his protocol and proof techniques are heavily reliant on this
fact.

The problem of DPD with bounded classical communication in the asymptotic iid setting was first considered by
Krovi and Devetak in [13], where the authors not only provided tight upper and lower bounds for this problem but also
significantly simplified the original proof given in [6]. In fact, the authors of that paper showed that under the constraint
that Alice is allowed to send at most nCclassical number of bits to Bob, it is possible to recover pure states from ρAB at
a rate similar in expression to the formula in Equation 1, with the important distinction that maximisation is now over
the set of all POVMs Λn such that I(Xn : BnRn) ≤ nCclassical. Here the mutual information is computed with respect
to the post measurement state ρXnBnRn

:=
(
IR

nBn ⊗ Λn

) (
(|ρ⟩ ⟨ρ|ARB)⊗n

)
and |ρ⟩ABR is some purification of the

shared state ρAB . Note that in this case the POVM Λn will in general no longer be rank-1.
All the works mentioned above tackle the problem of purity distillation in the asymptotic iid setting, that is, when

one assumes that many independent copies of the resources are available to the parties in the protocol. Recently,
Chakraborty, Nema and Buscemi [3] presented one-shot versions of the local and distributed purity distillation proto-
cols in [3], where the authors assumed that only one copy of the underlying state is available to the parties taking part
in the protocol. Although the techniques presented in that paper generalise Devetak’s [6] original techniques to the
one-shot setting, it is not immediately clear how one can adapt them to the case of DPD with bounded communica-
tion. In particular it is not clear how one can extend the asymptotic iid results of Krovi Devetak on DPD with bounded
communication to the one shot setting.

Our Contribution

All the protocols for distributed purity distillation mentioned so far work in the paradigm where one is allowed to
borrow some ancilla qubits at the beginning of the protocol but must account for them in the final rate. In fact, all the
existing protocols which achieve the best known rate for this problem, whether in the asymptotic iid setting ([6] and
[13]) or the one shot setting ([3]) crucially require ancilla qubits which they use in this catalytic manner. Furthermore,
the rate at which these protocols borrow ancilla is typically quite high, roughly 1

nI(Xn : RnBn) for the asymptotic
iid protocols and Iεmax(X : RB) for one shot protocols, where the mutual information quantities are always computed
with respect to the post measurement state ρXRB obtained after the action of the POVM. This is clearly undesirable
from a practical standpoint, since one would hope that protocols used to distil pure qubits would themselves require
only a few initial pure qubits to function.

Note that there are ad-hoc techniques, called bootstrapping, to reduce the rate of pure qubits which the protocol
consumes in the asymptotic iid setting. Indeed, given n iid copies of the underlying state, one can divide these states
into blocks of size

√
n. One can then use some ancilla to run the Krovi-Devetak protocol on the first block, and

recover this ancilla at the end of the protocol. The recovered ancilla can then be used catalytically on subsequent runs
of the Krovi-Devetak protocol on the other

√
n sized blocks. There may be other similar strategies which use the idea

of dividing the iid states into smaller blocks to reduce the number of ancilla qubits that the parties have to borrow (see
Devetak [6]) However, these strategies are ad-hoc and depend upon assumptions regarding the number of pure qubit
states that each party can distil. Further, these techniques completely fail in the one-shot setting where only one copy
of the underlying state is available, and one cannot do any bootstrapping.

In this paper we present a uniform approach towards distilling the maximum number of pure qubits in the dis-
tributed setting for a given amount of classical communication, while at the same time reducing the number of initial
pure catalytic ancilla qubits borrowed, which works both in the one-shot and the asymptotic iid setting. We call the pro-
posed protocol as FewQubits (see Theorem 7.1 in Section 7). In comparison with existing protocols, FewQubits
has several key improvements with regard to the number of ancilla qubits it requires, while maintaining the same rate
of distillation as existing protocols. To highlight these improvements, we present a comparison of FewQubits with
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the currently existing protocols, both in the asymptotic iid and one shot settings. We show that FewQubits offers
advantages over existing protocols in both paradigms:

1. In the asymptotic iid limit, the rate at which FewQubits requires input ancilla qubits to function is 0, inde-
pendent of the input mixed state ρAB or the input POVM Λn.

2. In the one shot setting, when unbounded 1-way classical communication is allowed (i.e. the setting of Devetak’s
original paper), FewQubits requires at most O(log 1

ε ) pure ancilla qubits in the worst case. In comparison,
the one shot protocol of [3] requires roughly Iεmax(X : RB) ancilla qubits to work under similar assumptions.
See Corollary 8.2 in Section 8 for details.

3. To facilitate a fair comparison in the more general scenario when the rate of classical 1-way communica-
tion is bounded in the one shot setting, we first present an appropriate one shot generalisation of the original
Krovi-Devetak protocol [13], which we call KD_OneShot(Section 6.4). We prove that under mild condi-
tions, FewQubits requires provably fewer ancilla qubits to function than KD_OneShot. See Corollary 8.1
in Section 8 for details.

The main technical ingredient in the construction of FewQubits is an embedding technique which we use to
simulate the action of the POVM Λ on the A space without requiring too many extra ancilla qubits. Note that since
the parties are allowed only local unitary operations, any POVM must be implemented coherently. To implement the
POVM Λ one would then require an extra register to store the classical outcomes, i.e., given any POVM Λ its coherent
counterpart can be expressed as the isometry

∑
x
|x⟩X

√
Λx

A, where the log dimension of the system X is precisely

the number of intial pure ancilla qubits required.
Note that since Λ is an arbitrary POVM, one cannot hope to bound the number of possible outcomes that this

POVM has. The first step therefore is to replace Λ with another POVM Λ̃ which has far fewer outcomes (typically
2I

ε
max(X:RB) many) but which nevertheless preserves the correlations between the the classical output register and the

system B. This step is made possible by the measurement compression theorem of Winter [23] and has been used by
both Devetak [6] and Krovi and Devetak [13]. The problem is harder in the one shot setting but one can use a recent
one shot measurement compression theorem of [5] to get around it. This theorem is the key to results presented in [3].

Note however, that even after bounding the number of outcomes of the POVM, one still needs to borrow some
Iεmax(X : RB) initial pure ancilla qubits to store the outcomes. Our main contribution goes towards reducing this rate
as much as possible. The main idea is that we design a unitary operator U

Λ̃
which simulates the action of measuring

the A register coherently with Λ̃ in place, i.e., in the A register itself, requiring very little, and in many cases zero,
additional pure ancilla in order to store the measurement outcomes. The details of this are technical and can be found
in Section 7.

Aside from our main result, we also present upper bounds on the rates of purity distillation that any local and
distributed distillation algorithm can hope to achieve in the one shot setting. Prior to our work such bounds were not
known in the one shot regime. These upper bounds nearly match the rate of distillation given by KD_OneShotand
FewQubits .

Organisation of the paper

The paper is organised as follows: in Section 2 we present the definitions of the one-shot quantities that we use
throughout the paper. We also state several known properties of these quantities as facts and prove some other relevant
properties as lemmas in this section. In Section 3 we formally present the definitions of ε-purity and the tasks of local
and distributed purity distillation. In Sections 4 and 5 we present upper bounds pertaining to the tasks of local and
distributed purity distillation. We should mention that Section 4 also contains details regarding an optimal achievable
protocol for local purity distillation. We would also like to highlight Section 5.1 in which we focus on upper bounds for
distributed purity distillation in the case when unbounded classical communication is allowed. In Section 6 we derive
lower bounds for distributed purity distillation in the case of bounded communication, with the KD_OneShotprotocol
presented in Section 6.4. We present our main result, the existence of FewQubits , in Section 7. Section 8 contains
a comparison between FewQubits and KD_OneShot.
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2 Preliminaries: Relevant Quantities

2.1 Notation and Some Basics

Definition 2.1 (Quantum State). A quantum state ρ on some register A is a positive semi-definite matrix with trace
1.

Remark 2.2. The notation σ ≥ 0, for a matrix σ is used to denote the fact that σ is positive semi-definite. More
generally, ρ ≥ σ implies that the matrix ρ−σ ≥ 0. This partial order of the positive semi-definite matrices is referred
to as the Loewner order.

Definition 2.3 (Fidelity and Generalised Fidelity). Given two quantum states ρ and σ, the fidelity between the two
states is defined as:

F (ρ, σ) :=
∥∥√ρ√σ∥∥

1
.

The fidelity can be extended in a meaningful way to matrices which are sub-states, i.e. matrices ρ and σ such that
0 ≤ ρ, σ,≤ I , in the following way:

F (ρ, σ) := F (ρ, σ) +
√
(1− Tr[ρ])(1− Tr[σ]).

F (·, ·) is referred to as the generalised fidelity.

Remark 2.4. The generalised fidelity was defined in [20].

Definition 2.5. · Operation Given an operator MA→B and the operator NA, we define the · operation as follows:

M ·N :=MNM †.

2.2 Definitions: One-Shot Entropic Quantities

In this section we introduce the one-shot entropic quantities which we will be using in the subsequent sections to
describe our protocols.

Definition 2.6 (Smoothed Support Max Entropy). Given a quantum state ρA, let us denote its eigenvalues by
λ1, . . . λ|supp(ρ)| (in ascending order) corresponding to the eigenvectors v1, . . . , v|supp(ρ)|. Let λ1, . . . λk denote the
smallest eigenvalues such that

∑
i λi ≤ ε. We define the smoothed support max entropy of ρA as

H̃ε
max(A)ρ := log (|supp(ρ)| − k) .

Definition 2.7 (Smoothed Norm Max Entropy). Given the setup of in Definition 2.6, we define the smoothed norm
max entropy of the state ρA as

H
′
max

ε
(A)ρ := log

1

λk+1

Definition 2.8 (Conditional Smooth Hypothesis Testing Entropy). Given a quantum state ρAB we define the
Smooth Hypothesis Testing Entropy as

Hε
H(A|B)ρ := −Dε

H(ρAB || IA ⊗ ρB)

where Dε
H , the hypothesis testing relative entropy, is defined as:

2−Dε
H(ρ||σ) := min

0≤Π≤I
Tr[Πρ]≥1−ε

Tr [Πσ] .

For the couple of definitions that follow we will require the notion of an ε-ball around a state ρ. The following
definition can be found in [20, Definition 10]:
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Definition 2.9. Given a quantum state ρA, we define the ε-ball Bε(ρ) as:

Bε(ρ) := {τ : 0 ≤ τ,Tr [τ ] ≤ 1, P (τ, ρ) ≤ ε} ,

where P (·, ·) is the purified distance on the space of sub-normalised states (see [20] for details).

Definition 2.10. (Conditional Smooth Max Entropy) Given a bipartite quantum state ρAB , we define the smooth
max entropy as

Hε
max(A|B)ρ := min

ρ′∈Bε(ρ)
max
σB≥0
Tr[σ]=1

2 logF
(
ρ′AB, 11A ⊗ σB

)
Definition 2.11. (Conditional Smooth Min Entropy) Given a bipartite quantum state ρAB , the conditional smooth
min entropy is defined as:

Hε
min(A|B)ρ := max

ρ′∈Bε(ρ)
− logmin

{
Tr
[
σB
]
| σB ≥ 0, ρ′AB ≤ IA ⊗ σB

}
.

2.3 Properties: One-Shot Entropic Quantities

Fact 2.12. (Data Processing Inequality for the Smooth Min and Max entropies, [20]) Given a state ρAB and
ε > 0, a CPTP map EB→D, we define σAD := (IA ⊗ EB)(ρAB). Then it holds that:

Hε
min(A|B)ρ ≤ Hε

min(A|D)σ

Hε
max(A|B)ρ ≤ Hε

max(A|D)σ.

We will also require the following data processing type inequality, presented in [19]. We present a simplified
version of the original result, which is much more pertinent for our purposes:

Fact 2.13. ([19] Given a state ρAB and ε > 0, a unital CPTP map EA→C , we define σCB := (EA ⊗ IB)(ρAB). Then
it holds that:

Hε
min(A|B)ρ ≤ Hε

min(C|B)σ

Hε
max(A|B)ρ ≤ Hε

max(C|B)σ.

We refer below to a subset of the chain rules for the smooth min and max entropies, presented in [21], that will
prove useful for our purposes. We present the chain rules in a simplified form which is most pertinent for us.

Fact 2.14. (Chain Rules for Smooth Min and Max Entropy, [21]) Given a state ρAB , it holds that:

Hε
max(AB)ρ ≥ HO(ε)

min (A|B)ρ +HO(ε)
max (B)ρ −O(log

1

ε
)

Hε
max(AB)ρ ≥ HO(ε)

max (A|B)ρ +H
O(ε)
min (B)ρ −O(log

1

ε
).

Fact 2.15 ([3]). For any quantum state ρA it holds that

Hε
max(A)ρ ≤ H̃ε

max(A)ρ ≤ H
′
max

ε
(A)ρ ≤ log

|A|
ε

Lemma 2.16. Given a state ρA and an arbitrary purification |ρ⟩RA, it holds that

Hε
H(A)ρ = Hε

H(R)ρ.
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Proof. We will first show that we can assume that the optimising operator in the definition ofHε
H(A)ρ commutes with

ρ. Let this operator be Π. To begin, consider the Schmidt decomposition of |ρ⟩AR:

|ρAR⟩ =
∑
a

√
PA(a) |a⟩A |ζa⟩R ,

which implies that
ρA =

∑
a

PA(a) |a⟩ ⟨a|A .

Then,
Tr [Πρ] =

∑
a

PA(a) ⟨a|Π|a⟩

Tr [Π] =
∑
a

⟨a|Π|a⟩

Without loss of generality we can assume that Π has non-negative eigenvalues only on a subspace of the support of ρ.
Now, consider the operator:

Π̃ :=
∑

|a⟩⟨a|∈supp(ρ)

⟨a|Π|a⟩ |a⟩ ⟨a|

It is easy to see that Π̃ has all the properties of Π that we require. Thus we can assume that the optimising operator
commutes with ρ. Next, we wish to compute the quantity Hε

H(R)ρ. As before, we can assume that the optimising

operator commutes with ρR, i.e., it diagonalises in the basis
{
|ζa⟩A

}
and has non-negative eigenvalues only on a

subspace of the support of ρR. This implies that, the optimising operator , say Σ, can be written as:

ΣR =
∑

ζa∈supp(ρR)

λa |ζa⟩ ⟨ζa|R

Finally, we see that the definition of Hε
H(R)ρ reduces to solving the following LP:

min
∑
a

λa∑
a

PA(a)λa ≥ 1− ε

0 ≤ λa ≤ 1

It is not hard to see that this same LP that defines Hε
H(A)ρ, if only we replace λa with µa := ⟨a|Π|a⟩. Thus, it holds

that
Hε

H(R)ρ = Hε
H(A)ρ.

This concludes the proof.

Lemma 2.17. For a state ρA and any pure state |ϕ⟩B , it holds that:

Hε
H(AB)ρ⊗ϕ = Hε

H(A)ρ.

Proof. Note that the following holds since ϕB is pure:

ρ⊗ |ϕ⟩ ⟨ϕ| =
∑
a

PA(a) |a⟩ ⟨a|A ⊗ |ϕ⟩ ⟨ϕ|B .

Therefore, from the proof of Lemma 2.16 we can see that Hε
H(AB)ρ⊗ϕ is given by the log of the solution of the LP:

min
∑
a

λ(a)∑
a

PA(a)λ(a) ≥ 1− ε.

However, this is the same LP that gives the expression for Hε
H(A)ρ. This concludes the proof.
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Lemma 2.18 (Equivalence of the Smoothed Norm Max and Smooth Hypothesis Testing Entropies). For any
quantum state ρA it holds that

H̃ε
max(A)ρ − 1 ≤ Hε

H(A)ρ ≤ H̃ε
max(A)ρ

Proof. To prove this lemma, we first observe that without loss of generality we can assume that the optimising operator
for Hε

H(A)ρ diagonalises in the same basis as ρA. To see this, we argue via contradiction. Suppose the assumption
isn’t true. Let ρA =

∑
a
p(a) |va⟩ ⟨va|A. Then, by definition:

Tr
[
ΠAρ

]
=
∑
a

p(a) ⟨va|Π|va⟩

≥1− ε.

Since 0 ≤ Π ≤ I, it holds that for all a, 0 ≤ ⟨va|Π|va⟩ ≤ 1. We can then define a new operator ΠOPT whose
eigenbasis contains the vectors {|va⟩} (it can have more eigenvectors since the rank of Π may be larger than the rank
of ρ), and which has the same eigenvalues as Π. Clearly, ΠOPT satisfies the criteria that Tr [ΠOPTρ] ≥ 1 − ε, and
also Tr [ΠOPT] = Tr [Π]. Therefore, we can always assume that the optimiser for Hε

H(A)ρ commutes with ρ. This
immediately implies the upper bound since we obtain H̃ε

max(A)ρ by projecting onto all but those eigenvectors of ρA

whose eigenvalues are the smallest and add up to at most ε.
Now, since we know that the optimising operator for Hε

H(A)ρ diagonalises in the same basis as ρA, once can
assume that the following holds for all such candidate operators ΠA:

ρA =
∑
a

PA(a) |a⟩ ⟨a|A

ΠA =
∑
a

λ(a) |a⟩ ⟨a|A

Then, it holds that the problem of finding Hε
H(A)ρ can be reduced to solving the following LP:

min
∑
a

λ(a)∑
a

PA(a)λ(a) ≥ 1− ε

We know from [16] that the log of the solution to this LP is at least H̃ε
max(A)ρ − 1. The lower bound follows. This

concludes the proof.

Lemma 2.19. (Subadditivity of the Smooth Hypothesis Testing Entropy) Given a bipartite quantum state ρAB , it
holds that

H
3
√
ε

H (AB)ρ ≤ Hε
H(A)ρ +Hε

H(B)ρ.

Proof. To see that this holds, let ΠA and ΠB be the optimising operators for Hε
H(A)ρ and Hε

H(B)ρ respectively.
Then,

Tr
[
ΠA ⊗ΠBρAB

]
= Tr

[(√
ΠA ⊗

√
ΠB
)
· ρAB

]
= Tr

[(
IA ⊗

√
Π

B
)
·
(√

Π
A
⊗ IB · ρAB − ρAB

)]
+Tr

[(
IA ⊗

√
Π

B
)
· ρAB

]
≥ 1− ε−

∥∥∥√ΠA
· ρAB − ρAB

∥∥∥
1

We know that
Tr
[
ΠA ⊗ IBρAB

]
≥ 1− ε

9



By the Gentle Measurement Lemma, we can then see that∥∥∥√ΠA
· ρAB − ρAB

∥∥∥
1
≤ 2
√
ε

Therefore we can conclude that,
Tr
[
ΠA ⊗ΠBρAB

]
≥ 1− 3

√
ε

Therefore, ΠA ⊗ΠB is a candidate optimiser for H3
√
ε

H (AB), which implies that

H
3
√
ε

H (AB)ρ ≤ Hε
H(A)ρ +Hε

H(B)ρ.

This concludes the proof.

Lemma 2.20. Given the quantum state ρA ⊗ πB , where πB is the maximally mixed state on the system B, it holds
that:

Hε
H(AB)ρ⊗π = Hε

H(A)ρ + log |B| .

Proof. By the arguments used in the proof of Lemma 2.18, we know that Hε
H(AB)ρ⊗π is obtained by solving the

following LP, which we call LP1:

min
∑
a,b

λ(a, b)

∑
a,b

PA(a)

|B|
λ(a, b) ≥ 1− ε,

where ρA =
∑
a
PA(a) |a⟩ ⟨a|A and πB =

∑
b

1
|B| |b⟩ ⟨b|

B . Consider also the following LP, which we call LP2:

min |B| ·

(∑
a

λ(a)

)
∑
a

PA(a)λ(a) ≥ 1− ε.

Now note that an optimising {λ(a)} for LP2 can be turned into a feasible {λ(a, b)} for LP1 by simply declaring
λ(a, b) = λ(a), ∀b. Similarly, an optimising {λ(a, b)} for LP1 can be turned into a feasible {λ(a)} for LP2 by
defining:

λ(a) :=
∑
b

1

|B|
λ(a, b).

This argument immediately implies that the minima of LP1 and LP2 are equal. However, note that the minima of
LP2 is precisely:

|B| · 2Hε
H(A)ρ .

Collating all the arguments above implies that:

Hε
H(AB)ρ⊗π = Hε

H(A)ρ + log |B| .

This concludes the proof.

Corollary 2.21. Given a state ρAB , it holds that :

Hε
H(AB)ρ ≤ Hε

H(A)ρ + log |B| .
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Proof. From the theory of unitary 1-designs we know that there exists a set of unitaries UB
i on the system B and

probability distribution {pi} such that, for any matrix MB , it holds that:

∑
i

piUiMU †
i = Tr [M ]

IB

|B|
.

Let us denote the operation
∑
i
piUi(·)U †

i as T B→B . Note that T is a unital CPTP map. Also, note that it is not hard

to show that for any state ρAB , it holds that:(
IA ⊗ T B

)
(ρAB) = ρA ⊗ πB,

where πB is the maximally mixed state on the system B. Therefore, by Lemma cite, we see that:

Hε
H(AB)ρAB ≤ Hε

H(AB)(IA⊗T B)(ρAB)

= Hε
H(AB)ρA⊗πB

= Hε
H(A)ρ + log |B| .

This concludes the proof.

Lemma 2.22. Let σA be a state such that ∥∥∥σA − |0⟩ ⟨0|A∥∥∥
1
≤ ε

Then
Hε

H(A)σ ≤ 0

Proof. The condition in the statement of the lemma implies that

⟨0|σ|0⟩ ≥ 1− ε

This implies that |0⟩ ⟨0|A is a valid candidate for the optimising operator for Hε
H(A)σ. Since |0⟩ ⟨0| has trace 1, the

result follows. This concludes the proof.

Lemma 2.23. Given a quantum cq state ρXB =
∑
x
PX(x) |x⟩ ⟨x|X ⊗ ρBx where x ∈ X , it holds that there exists a

subset S ⊆ X such that

Pr
PX

[S] ≥ 1− 2
√
ε

H
√
ε

H (ρBx ) ≤ Hε
H(B|X)ρ − log ε, ∀x ∈ S.

Proof. Without loss of generality we can assume that the optimising operator ΠXB in the definition of Hε
H(B|X)ρ is

of the form:
ΠXB =

∑
x

|x⟩ ⟨x| ⊗ΠB
x .

By definition, this operator has the property that:∑
x

PX(x) Tr
[
ΠB

x ρ
B
x

]
≥ 1− ε.

By Markov’s inequality, we can then see that there exists a set T1 such that Pr
PX

[S] ≥ 1−
√
ε and for all x ∈ T1,

Tr
[
ΠB

x ρ
B
x

]
≥ 1−

√
ε.
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Again, by definition, it holds that:
2H

ε
H(B|X)ρ =

∑
x

PX(x) Tr
[
ΠB

x

]
.

Again, Markov’s inequality tells us that there exists a set T2 ⊆ X of probability (under PX ) of at least 1− ε such that
for all x ∈ T2, it holds that:

Tr
[
ΠB

x

]
≤ 2H

ε
H(B|X)ρ

ε
.

Therefore, for all x ∈ T1
⋂
T2 (which has probability at least 1− 2

√
ε under PX ), it holds that ΠB

x is a candidate for
the optimiser in the definition of H

√
ε

H (ρBx ). Thus defining S := T1
⋂
T2 we see that the result follows. This concludes

the proof.

Lemma 2.24. Given a cq state
ρXB =

∑
x

PX(x) |x⟩ ⟨x|X ⊗ |vx⟩ ⟨vx|B ,

it holds that Hε
H(B | X)ρ ≤ 0.

Lemma 2.25. Given a cq state of the form

ρXAB =
∑
x

PX(x) |x⟩ ⟨x|X ⊗ |vx⟩ ⟨vx|AB ,

it holds that Hε
H(B | X)ρ = Hε

H(A | X)ρ.

The proofs of Lemma 2.24 and 2.25 can be found in Appendix B. Finally, we will require a data processing
inequality for Hε

H :

Lemma 2.26. Given a state ρAB , a CPTP map EB→D, and a unital CPTP map FA→C , it holds that:

Hε
H(A|B)ρ ≤ Hε

H(A|D)(IA⊗EB)(ρAB),

Hε
H(A|B)ρ ≤ Hε

H(C|B)(FA⊗IB)(ρAB).

Proof. The proof of the first inequality follows directly from the data-processing inequality for Dε
H(·||·) and the

definition of Hε
H(A|B)ρ. For the second inequality, note that by definition, we know that:

exp
(
Hε

H(C|B)(FA⊗IB)(ρ)

)
= min

ΠCB : 0≤ΠCB≤ICB

Tr[Π(FA⊗IB)(ρAB)]≥1−ε

Tr
[
ΠCB

(
IC ⊗ ρB

)]
.

Let Π∗ be the optimising operator in the expression ofHε
H(C|B)(FA⊗IB)(ρ). We will show that the operator (F†)C→A⊗

IB(Π∗) is a candidate optimiser for Hε
H(A|B)ρ, where F† is the adjoint of F . Firstly, note that since F is unital and

completely positive, F† is trace preserving and completely positive, i.e., CPTP. Also, since F is trace preserving, F†

is unital. Note that since CPTP maps preserve operator inequalities, it holds that:

0 ≤
(
F†C ⊗ IB

)
(Π∗)

≤
(
F†C ⊗ IB

)
(IC ⊗ IB)

(a)
= IA ⊗ IB.

In equality (a) we have used the fact that F† is unital, which implies that F†(IC) = IA. With these observations in
hand, note that the following holds:

Tr
[
Π∗ (FA ⊗ IB

)
(ρAB)

]
=
〈
Π∗,

(
FA ⊗ IB

)
(ρAB)

〉
=
〈(
F†C ⊗ IB

)
(Π∗), ρAB

〉
= Tr

[(
F†C ⊗ IB

)
(Π∗)ρAB

]
≥ 1− ε.

12



This implies that
(
F†C ⊗ IB

)
(Π∗) is a candidate optimiser for Hε

H(A|B)ρ, which in turn implies that:

exp(Hε
H(A|B)ρ) ≤ Tr

[(
F†C ⊗ IB

)
(Π∗)

(
IA ⊗ ρB

)]
=
〈(
F†C ⊗ IB

)
(Π∗), IA ⊗ ρB

〉
=
〈
Π∗,

(
FA ⊗ IB

) (
IA ⊗ ρB

)〉
(b)
=
〈
Π∗, IC ⊗ ρB

〉
= Tr

[
Π∗ (IC ⊗ ρB)]

= exp
(
Hε

H(C|B)(FA⊗IB)(ρ)

)
,

where in equality (b) we have used the fact that F is unital.

3 Definitions: ε-Purity, Local and Distributed Purity Distillation

In this section we present the formal definitions of the ε-purity of a state and the tasks of local and distributed purity
distillation.

3.1 ε-Purity and Allowable Local Operations

We will first define the ε-purity of a state:

Definition 3.1. ε-Purity Given a state ρA, the ε-purity of ρA is defined to as the number log |A| −Hε
H(A)ρ.

As mentioned in the introduction, the notion of ε-purity puts a bound on the number of single qubit pure states
|0⟩ that may be extracted from a given state ρ. To make this connection precise, we have to list the kinds of local
operations that a party is allowed to perform on ρ to extract pure states from it. It is crucial that these operations do
not increase the ε-purity of the state. To that end, we consider below a list of allowed local operations. We later show
in Lemma 4.1 that indeed the operations listed below cannot increase the ε-purity of a given state.

Definition 3.2. Allowable Local Operations Given a state ρA, we allow the following operations to be performed
on the system A:

1. Appending a register Amix to the system A, where the state on Amix is maximally mixed.

2. Unitary operations.

3. Local completely dephasing maps P .

4. Tracing out a subsystem.

Along with the above operations, we will also allow appending pure states |0⟩ ⟨0| to the system A in a register Cpure.
To account for this, we require that the formula for the ε-purity of the state on ACpure be modified as follows:

log
∣∣ACpure

∣∣−Hε
H(ACpure)ρ⊗|0⟩⟨0| − log

∣∣Cpure
∣∣ .

3.2 Local Purity Distillation

We will now give an operational interpretation to the ε-purity, by building protocols out of the allowable operations
which extract pure states from the given input state. To do this, we first define the notion of a local purity distillation
code:

13



Definition 3.3. (Local Purity Distillation Code) Given a quantum state ρA in the register A, we define a ε local
purity distillation code as a sequence of allowable operations which produce a state σAp , with the property that:∥∥∥σAp − |0⟩ ⟨0|Ap

∥∥∥
1
≤ ε.

The rate of the code is given by
Rε

local := log |Ap| − log
∣∣Cpure

∣∣ .
A rate R is said to be ε-achievable for local purity distillation with respect to the state ρA if there exists an ε purity

distillation code such that
Rε

local = R−O(log
1

ε
)

Definition 3.4. (ε-Local Distillable Purity) Given a state ρA, the ε-local distillable purity κε(ρA) is defined as the
supremum over all ε-achievable rates R for local purity distillation.

3.3 Distributed Purity Distillation

As mentioned in the introduction, the main topic of this paper is the task of distributed purity distillation. In this task
we envision two parties, Alice and Bob, each of whom possess a share of a bipartite quantum state ρAB . The goal
is for them to coordinate and extract pure states from this shared state. Under the supposition that Alice and Bob
are allowed only local allowable operations on their systems A and B, they can each perform an optimal local purity
distribution protocol, and recover pure states roughly at the rate log |AB| −Hε2

H (A)ρ−Hε2

H (B)ρ. However, note that
in this setup since we did not allow any communication between Alice and Bob, this is the best that they can do. The
question then is that whether given the ability to communicate, can they do better?

We must keep in mind that whatever communication channel we introduce must be implementable by composing
some allowable operations. This naturally leads us to the following definition of a distributed purity distillation
protocol:

Definition 3.5. (Distributed Purity Distillation (DPD)) Given a bipartite quantum state ρAB to two parties Alice
and Bob, where Alice has access to the registerA and Bob has access to the registerB. A distributed purity distillation
protocol with error ε is then defined as a protocol consisting of :

1. Local allowable operations on the system A.

2. A completely dephasing channel PXA→XB , where the system XA is generated at Alice’s end and XB is a
classical register belonging to Bob.

3. Local allowable operations on the system B.

Suppose that the state generated at the end of the protocol is σApBp , where the system Ap belongs to Alice and Bp

belongs to Bob. We require that: ∥∥∥σApBp − |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp

∥∥∥
1
≤ ε.

The rate of the protocol is defined as

Rε
dist := log |Ap|+ log |Bp| − log |C|

where the system C ∼= Calice ⊗ Cbob accounts for the local pure ancilla qubits borrowed by both Alice and Bob in the
registers Calice and Cbob respectively.

In this paper, as in [13], we will be concerned with DPD protocols with bounded classical communication from
Alice to Bob. To that end, we introduce the following definition:
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Definition 3.6. (DPD with Bounded Classical Communication) Given a bipartite state ρAB , we define a (Rε
dist, C

ε
com, ε)

protocol as a distributed purity distillation protocol with error ε, as defined in Definition 3.5, where it holds that

log |XB| ≤ Cε
com.

where XB is the classical output register of the perfectly dephasing channel PXA→XB .

A rate pair (Rpure, Cclassical) is said to be ε-achievable for DPD with bounded classical communication if there
exists a (Rε

dist, C
ε
com, ε) protocol such that:

Rε
dist = Rpure −O(log

1

ε
)

Cε
com ≤ Cclassical +O(log

1

ε
).

Definition 3.7. (ε 1-way Distillable Purity) Given a state ρAB and Cclassical ≥ 0, the ε 1-way distillable purity
κ→ε (ρAB, Cclassical) is defined as the supremum of Rpure over all ε-achievable rates (Rpure, Cclassical) for distributed
purity distillation.

Remark 3.8. We will use the notation κ→ε (ρAB,∞) to indicate the 1-way distillable purity in the case when we allow
unbounded but finite classical communication.

4 Optimal Protocols for Local Purity Distillation

In this section we will show that given a state ρA, any finite sequence of allowable operations cannot increase the
ε-purity of this state. We will then give an operational interpretation of the ε-purity, by constructing a local purity
distillation code which extracts pure states from the given state at a rate which is almost equal to the ε-purity. We will
also show that the ε-purity is the best rate of pure state production which any local purity distillation code can hope to
achieve.

Lemma 4.1. The ε-purity of a state ρA is non-increasing under allowable local operations.

Proof. Recall that, given a state ρA, the following local operations are allowed:

1. Introducing a maximally mixed state in a register Amix.

2. Introducing pure states in a register Cpure which must be accounted for.

3. Unitary operations.

4. A local completely dephasing channel P .

5. Discard (trace out) a subsystem.

We will show that each of the above operations do not increase the ε-purity of ρA i.e., log |A| −Hε
H(A)ρ.

Appending πAmix :
The state under consideration is now ρA ⊗ πAmix . Then, the following holds:

log |AAmix| −Hε
H(AAmix)ρ⊗π

(a)
= log |AAmix| −Hε

H(A)ρ − log |Amix|
= log |A| −Hε

H(A)ρ,

where equality (a) follows from Lemma 2.20.
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Appending Cpure:
In this case, recall that Definition 3.2 requires the formula for the ε-purity to be adjusted with a correction term
− log

∣∣Cpure
∣∣. With this correction and the fact that Hε

H(ACpure)ρ⊗|0⟩⟨0| = Hε
H(A)ρ (see Lemma 2.17) it is trivial to

see that the ε-purity does not change.

Unitary Operations:
In this case, suppose that a unitary operator UA acts on ρA to give σA. The unitary invariance of Hε

H(·) implies that
Hε

H(A)ρ = Hε
H(A)σ. This directly implies that unitary operations keep the ε-purity invariant.

Completely Dephasing Maps:
In this case, suppose that the system A is comprised of the registers A′X1, and there exists a completely dephasing
map PX1→X2 , where |X1| = |X2|. Since there exists a natural isomorphism between A and A′X1, we can write the
following:

Hε
H(A)ρ = Hε

H(A′X1)ρ
(b)

≤ Hε
H(A′X2)IA′⊗PX1 (ρ),

where we have used the fact that the map IA′ ⊗ PX1 is a unital CPTP map and Lemma 2.26 in step (b). This directly
implies that the ε-purity is non-increasing under these maps, since log |A| = log |A′X1|.

Discarding Subsystems:
Again, suppose that A is comprised of the systems A′′G, where the system G is to be discarded. Suppose that the
state after discarding G, on the system A′′ is σA

′′
. Then, the following holds:

Hε
H(A)ρ = Hε

H(A′′G)ρ
(c)

≤ Hε
H(A′′)σ + log |G| .

Step (c) follows from Corollary 2.21. This implies that:

log |A| −Hε
H(A)ρ

= log
∣∣A′′G

∣∣−Hε
H(A′′G)ρ

≥ log
∣∣A′′G

∣∣−Hε
H(A′′)σ − log |G|

= log
∣∣A′′∣∣−Hε

H(A′′)σ.

This concludes the proof.

We will now provide an operational interpretation of the ε-purity, by exhibiting an ε purity distillation code which
recovers pure states from the given input state at a rate almost equal to the ε-purity of the input state. Such a protocol
was shown to exist in [3, Theorem 1.7]. Further using Fact 2.18 along with the results of [3], we get the following
fact:

Fact 4.2. Lower Bound for κε(ρA) Given a quantum state ρA, there exists an ε purity distillation code with rate

Rε
local = log |A| −Hε2/9

H (A)ρ +O(log ε)− 1

This also implies that:
κε(ρ

A) ≥ log |A| −Hε2/9
H (A)ρ +O(log ε)− 1.

In fact, the ε purity distillation code which achieves the above lower bound consists only of a unitary operator UA

acting on the system A, and does not require any other allowable operations.
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The following theorem encapsulates out discussion so far and connects the local distillable purity with the ε-purity
by showing that the latter is an upper bound for the former:

Theorem 4.3. Given a quantum state ρA and ε > 0, the ε local distillable purity of the state κε(ρA) satisfies the
following bounds:

log |A| −Hε2/9
H (A)ρ +O(log ε)− 1 ≤ κε(ρA) ≤ log |A| −Hε

H(A)ρ

Proof. The lower bound follows directly from Fact 4.2. To get the upper bound, note that any ε purity distillation
code is a sequence of allowable operations, which finally output a state σAp , such that:∥∥∥σAp − |0⟩ ⟨0|Ap

∥∥∥
1
≤ ε.

Using the allowed operations listed above, we will now characterise the form of any finite sequence of operations. To
do this, we adopt the notation that any subsystem with the name Gi (for some i ∈ N) will be discarded at the end of
the protocol. We also denote the final output state as σApG, where Ap is to be retained and G discarded. Note that
without loss of generality we can assume that any registers which contain maximally mixed states or pure states can
be introduced at the very beginning of the protocol, and any systems that are to be traced out can be discarded at the
very end. Then, any general local purity distillation protocol takes the form in Table 1.

Alice

State ρA

Append πAmix ⊗ |0⟩ ⟨0|Cpure .

State σAAmixCpure := ρA ⊗ πAmix ⊗ |0⟩ ⟨0|Cpure

Unitary U1 : AAmixCpure → A1X1G1

Channel P : X1 → X2G2

Unitary U2 : A1X2 → A2X3G3

. . .

State σApG

Discard the subsystem G

State σAp

Table 1: General Schema of a Local Protocol

Then, one can use Lemma 4.1 at every step of the protocol iteratively, to see that:

log |A| −Hε
H(A)ρ ≥ log |Ap| −Hε

H(Ap)σ − log
∣∣Cpure

∣∣ .
However, using the requirement that σAp has to be close to the pure state |0⟩ ⟨0|Ap and invoking Lemma 2.22, we see
that:

log |Ap| −Hε
H(Ap)σ ≥ log |Ap| .

Collating these arguments, we see that:

κε(ρ
A) ≤ log |Ap| − log

∣∣Cpure
∣∣

≤ log |Ap| −Hε
H(Ap)σ − log

∣∣Cpure
∣∣

≤ log |A| −Hε
H(A)ρ.
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This concludes the proof.

In the following section, we will thus refer to the locally optimal protocol, in reference to Theorem 4.3. Note that
this locally optimal protocol consists only of a a unitary operator UA acting on the system A, as given in Fact 4.2.

5 Distributed Protocols with Ancilla: Upper Bounds

In this section we prove a one-shot upper bound on the number of qubit states that Alice and Bob can hope to distil,
given the setting of the distributed purity distillation problem with classical communication bounded by the rate
Cclassical. Throughout the rest of this section, to impose the bound on classical communication, we make the following
assumption:

Assumption 5.1. The completely dephasing channel PXA→XB is such that

log |XB| ≤ Cclassical,

where Cclassical is the maximum allowable rate of classical communication.

Notation

In our proofs of the upper bounds for distributed purity distillation, we will have to deal with several entropic quan-
tities related to states which exist at different times during the protocol. For example, we may use a relation of the
form Hε

H(ApAgXA) ≥ Hε
H(ACaliceAmix). These two entropic quantities correspond to two different states, related

by Alice’s application of her local operations. In the interest of brevity, we will not explicitly spell out the state corre-
sponding to which these registers are defined. However, in all cases the state and the point in the protocol when that
state exists will be clear from the context provided by Table 2.

We will also require the following lemma:

Lemma 5.2. Given a quantum state ρAB with the A register belonging to Alice and the B register belonging to Bob,
any distributed purity distillation protocol making error at most ε can achieve a rate at most

Rε
dist ≤ log |A|+ log |B| −Hg(ε)

max(A)−H
f(ε)
min (B | XB) + 2 log ε,

where the entropic quantities are computed with respect to states as defined in Table 2.

Proof. Before we start the proof, we will first characterise what any general distributed purity distillation protocol
looks like:
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Alice Bob

State ρAB

Append state πAmix ⊗ |0⟩ ⟨0|Calice Append state πBmix ⊗ |0⟩ ⟨0|Cbob

Allowable local operations

Create state σA1XA

State σA1XAB

XA→XB−−−−−−→
Allowable local operations on A1 Allowable local operations BBmixCbobXB .

State σApAgBpBg

Discard system Ag Discard system Bg

Final state σApBp

Table 2: General Schema of a Distributed Protocol

Note that in the general protocol, although we can roll all of Bob’s actions together, we must treat Alice’s actions
before and after she sends the classical messages to Bob separately. As in the proof of Theorem 4.3, we can assume
without loss of generality that all systems that contain either maximally mixed states or pure states can be appended
at the very beginning of the protocol and all systems to be traced out can be discarded at the end of the protocol.
To that end, we make the convention that the actual state before both Alice and Bob discard some sub-systems is
given by σApAgBpBg , where Ag and Bg contain all systems that are to be discarded. Note that this means that the
expression ‘Allowable local operations’ during the protocol execution refers only to some finite sequence of local
unitary operators and local completely dephasing maps.

Before we move on with the main proof, we will state a useful claim:

Claim 5.3. In reference to the protocol in Table 2, it holds, for any δ > 0, that:

Hδ
H(BpBg) ≥ Hδ

H(BBmixCbobXB)

Hδ
max(ApAg) ≥ Hδ

max(A1)

Hδ
max(A1XA) ≥ Hδ

max(AAmixCalice).

Proof. Note that in going from σBBmixCbobXB to σBpBg , Bob uses either local unitary operators or completely de-
phasing maps. Since Hδ

H(·) for any state is non-decreasing under these operations, the claim first inequality follows.
Similar observations holds for Alice’s actions in going from σA1 to σApAg , and from ρAAmixCalice to σA1XA . Since the
smooth max entropy is invariant under the action of isometries and non-increasing under the action of unital CPTP
maps (Fact 2.13), the other two inequalities follow.

Next, note that:
log |ApBp| − log |CaliceCbob| = log |ABAmixBmix| − log |AgBg|
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We will lower bound log |AgBg| which will in turn allow us to upper bound log |ApBp| − log |CaliceCbob|. Before we
begin, we would like to point out that the systems XA and XB are isomorphic, however, they differ in the fact that the
systemXB holds a classical state (diagonalisable with respect to the basis {|x⟩} of the completely dephasing channel)
which is the output of the completely dephasing channel upon acting on the contents of the system XA. Thus the state
on the registers XBBBmix after Alice sends the contents of the register XA through the channel is a cq state (with
pure qubits |0⟩Cbob in the register Cbob in tensor with the rest of the systems), while the state on the systems ApAgXA

are not cq in general.
We will now lower bound log |AgBg|:

log |AgBg| ≥ Hε
H(Ag) +Hε

H(Bg) + 2 log ε

≥ H3
√
ε

H (ApAg) +H
3
√
ε

H (BpBg) + 2 log ε

The above inequality uses the subadditivity of the smooth hypothesis testing entropy twice, along with the fact that
both Hε

H(Ap) and Hε
H(Bp) are 0. Thus, LHS is

(a)

≥ H
3
√
ε

H (ApAg) +H
3
√
ε

H (BXBBmixCbob) + 2 log ε

(b)
= H

3
√
ε

H (ApAg) +H
3
√
ε

H (BXB) + log |Bmix|+ 2 log ε

(c)

≥ H3
√
ε

max(ApAg) +H3
√
ε

max(XB) +H3
√
ε

max(BXB)−H3
√
ε

max(XB) + log |Bmix|+O(log ε)

(d)

≥ H3
√
ε

max(ApAg) +H3
√
ε

max(XA) +H
f(ε)
min (B | XB) + log |Bmix|+O(log ε)

(e)

≥ H3
√
ε

max(A1) +H3
√
ε

max(XA) +H
f(ε)
min (B | XB) + log |Bmix|+O(log ε)

In inequality (a) we have used Claim 5.3. In equality (b) we used Lemma 2.20 and also the fact that the register Cbob
contains a pure state in tensor with all the other systems. In inequality (c) we have used Fact 2.15 and Lemma 2.18
to lower bound both H3

√
ε

H terms by H3
√
ε

max , and we have absorbed the constant −1 arising from Lemma 2.18 into the
O(log ε) term, assuming small enough ε. In inequality (d) above we have used the fact that the completely dephasing
channel is a unital CPTP and the smooth max entropy cannot be decreased by the action of such a map [19]. We have
also used the chain rules from Fact 2.14. Inequality (e) follows from Claim 5.3. Next, we will use the subadditivity
of the max entropy to see that the LHS is:

≥ Hh(ε)
max(A1XA) +H

f(ε)
min (B | XB) + log |Bmix|+O(log ε)

(f)

≥ Hh(ε)
max(ACaliceAmix) +H

f(ε)
min (B | XB) + log |Bmix|+O(log ε)

(g)

≥ Hg(ε)
max(A) +H

g(ε)
min (CaliceAmix|A) +H

f(ε)
min (B | XB) + log |Amix|+ log |Bmix|+O(log ε)

(h)
= Hg(ε)

max(A) +H
f(ε)
min (B | XB) + log |Amix|+ log |Bmix|+O(log ε).

We have used Claim 5.3 in inequality (f). In inequality (g) we have used the chain rule from Fact 2.14. Finally, for
equality (h), we use the following observation, which holds for any δ > 0:

Hδ
min(CaliceAmix|A) ≥ Hmin(CaliceAmix|A)

≥ max
σA

sup log
{
λ | 2−λICaliceAmix ⊗ σA ≥ πAmix ⊗ |0⟩ ⟨0|Calice ⊗ ρA

}
≥ sup log

{
λ | 2−λICaliceAmix ⊗ ρA ≥ πAmix ⊗ |0⟩ ⟨0|Calice ⊗ ρA

}
≥ log |Amix| .

This shows that, for any distributed purity distillation protocol with error at most ε, it holds that

Rε
dist ≤ log |A|+ log |B| −Hg(ε)

max(A)−H
f(ε)
min (B | XB) +O(log ε)

This concludes the proof.
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We are now ready to state and prove a theorem about the upper bound of the distributed purity of any quantum
state:

Theorem 5.4. (Upper Bound for Distributed Purity of a State) Given a quantum state ρAB , the 1-way distillable
purity κ→ε (ρAB, Cclassical) is at most

κ→ε (ρAB, Cclassical) ≤ log |A|+ log |B| −Hg(ε)
max(A)−min

Λ∈S
H

f(ε)
min (B | X)ΛA⊗IB(ρAB) +O(log ε)

where the set S is a subset of the set of all POVMs on the system A and is defined as follows:

S :=
{
ΛA→X | Iεmax(X : RB)IRB⊗Λ(|ρ⟩⟨ρ|ABR) +O(log ε) ≤ Cclassical

}
where |ρ⟩ABR is an arbitrary purification of ρAB .

Proof. From Lemma 5.2, we know that any distributed purity distillation protocol for ρAB and which makes an error
at most ε, can extract a purity of at most

Rε
dist ≤ log |A|+ log |B| −Hg(ε)

max(A)−H
f(ε)
min (B | XB) +O(log ε) (2)

Recall that we obtained the system XB by:

1. Using local allowed operations to obtain σA1XA .

2. Sending XA through the completely dephasing channel PXA→XB .

3. Using local allowed operations on A1 to obtain the systems ApAg.

Suppose that V AAmixCpure→A1XAE1

1 and V A1→ApAgE2

2 are the Stinespring dilations of the maps that Alice enacts in
Steps 1 and 3 above. Now consider the isometry:

V3 : AAmixCpure → ApAgXAE1E2

:=
(
V2 ⊗ IXA

)
◦ V1.

Define the unitary extension of V3 in the usual way by appending an ancilla system W to the domain of W3. We
will call this unitary UALICE. Then note that if we measure the XA system in the computation basis, the probability of
getting the outcome x is given by the following expression:

Tr
[(

IApAgE1E2 ⊗ |x⟩ ⟨x|XA

)
·
(
UALICE(ρ

A ⊗ πAmix ⊗ |0⟩ ⟨0|Calice ⊗ |0⟩ ⟨0|W )U †
ALICE

)]
By defining τAmixCaliceW := πAmix ⊗ |0⟩ ⟨0|Calice ⊗ |0⟩ ⟨0|W , and using the cyclicity of trace, we see that the above
expression simplifies to:

TrA

[
TrAmixCaliceW

((
IA ⊗

√
τ
AmixCaliceW

)
· U †

ALICE

(
IApAgE1E2 ⊗ |x⟩ ⟨x|XA

)
UALICE

)
(ρA)

]
We define:

ΛA
x := TrAmixCaliceW

[((
IA ⊗

√
τ
AmixCaliceW

)
· U †

ALICE

(
IApAgE1E2 ⊗ |x⟩ ⟨x|XA

)
UALICE

)]
.

Clearly Λx ≥ 0. Additionally, it is easy to see that:∑
x

ΛA
x = IA.
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Therefore, Λ :=
{
ΛA
x

}
is a POVM. Note that the following holds, with respect to the state (IRB ⊗ Λ)(|ρ⟩ ⟨ρ|ABR):

Cclassical ≥ log |XB|

≥ HO(ε2)
max (XB)(IRB⊗Λ)(|ρ⟩⟨ρ|ABR +O(log ε)

≥ Iεmax(XB : RB)(IRB⊗Λ)(|ρ⟩⟨ρ|ABR +O(log ε).

Thus, renaming XB to X , it is clear that the supremum of the rate Rpure over all ε achievable rates pairs
(Rpure, Cclassical, ε) is bounded above by the supremum of the upper bound on Rε

dist obtained in Equation 2, over
the set S of all POVMS ΛA→X such that Iεmax(X : RB)IRB⊗Λ(|ρ⟩⟨ρ|ABR) + O(log ε) ≤ Cclassical. This immediately
implies that:

κ→ε (ρAB, Cclassical) ≤ log |A|+ log |B| −Hg(ε)
max(A)− inf

Λ∈S
H

f(ε)
min (B | X)ΛA⊗IB(ρAB) +O(log ε)

This concludes the proof.

5.1 The Special Case of Unbounded Classical Communication

As mentioned earlier in the introduction, the original version of the distributed purity distillation problem was consid-
ered by Devetak in [6], in the regime when unbounded communication is allowed. In that spirit, we will show in this
section that κ→ε (ρAB,∞) can be bounded above by the expression in Theorem 5.4, with the important distinction that
the infimum over all POVMs in the set S can be replaced by an infimum over all rank-1 POVMs.

Theorem 5.5. Given a quantum state ρAB , the 1-way distillable purity in the case of unbounded communication,
κ→ε (ρAB,∞), can be bounded above by:

κ→ε (ρAB,∞) ≤ log |A|+ log |B| −Hg(ε)
max(A)− inf

Λ:rank-1
H

f(ε)
min (B | X)ΛA⊗IB(ρAB) +O(log ε).

Proof. The proof follows easily from Theorem 5.4, by noticing that:

inf
Λ∈S

H
f(ε)
min (B | X)ΛA⊗IB(ρAB) ≥ inf

Λ:rank-1
H

f(ε)
min (B | X)ΛA⊗IB(ρAB),

by the data processing inequality for the smooth min entropy. Specifically, for any POVM Λ, one can always create a
new POVM Λ′ by decomposing each POVM element in Λ into rank one operators |φ⟩ ⟨φ| such that 0 ≤ Tr [|φ⟩ ⟨φ|] ≤
1, and then assigning a new label to the outcome corresponding to each of these operators. This concludes the
proof.

6 Distributed Protocols with Ancilla: Lower Bounds

In this section we will present a DPD protocol with bounded classical communication, which uses additional ancilla
qubits in a catalytic manner, with an almost optimal rate of pure state distillation. We call this protocol KD_OneShot(see
Section 6.4). This protocol can be viewed as a one-shot version of the protocol presented in [13].

The main theorem in this section quantifies the rate of pure state distillation for the protocol KD_OneShot. The
theorem will take the following form: we will first fix the state ρAB and a rate of classical communicationCclassical. We
will then fix a POVM ΛA→X such that Iεmax(X : RB)IRB⊗Λ(|ρ⟩⟨ρ|ABR) +O(log ε) ≤ Cclassical. Finally, we will show
the existence of a protocol which distils pure states at the rate (roughly) log |A|−Hε

H(A|X)+ log |B|−Hε
H(B|X)−

Iεmax(RB : X), with communication Iεmax(RB : X)+O(log 1
ε ) (which is at most Cclassical+O(log 1

ε )). This protocol
is KD_OneShot. The final lower bound on κ→ε (ρAB, Cclassical) is given by taking the supremum over all POVMs Λ
such that Iεmax(X : RB)IRB⊗Λ(|ρ⟩⟨ρ|ABR) +O(log ε) ≤ Cclassical.

To be precise, we prove the following theorem:
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Theorem 6.1. Given the bipartite quantum state ρAB , it holds that

κ→
ε1/32

(ρAB, Cclassical) ≥ sup
Λ∈S

Rpure +O(log ε),

where
Rpure = log |A| −Hε

H(A | X) + log |B| −Hε
H(B | X)− Iε4max(X : RB)

and the set S is as follows:

S :=
{
ΛA→X | Iεmax(X : RB)IRB⊗Λ(|ρ⟩⟨ρ|ABR) +O(log ε) ≤ Cclassical

}
.

The rate of communication of the protocol is Iε
4

max(X : RB) + O(log 1
ε ). All the entropic quantities above are

computed with respect to the state (IRB ⊗ Λ)(|ρ⟩ ⟨ρ|ARB).

Proof. First, fix Λ ∈ S. Then, using this POVM in conjunction with Proposition 6.10 and Lemma 6.11, shows that
there exists a protocol (KD_OneShot) which for which the rate Rpure is achievable with error at most ε1/32, and
classical communication Iε

4

max(X : RB) + O(log 1
ε ). Then, taking the supremum of Rpure over S concludes the

proof.

In the following sections, we will prove Proposition 6.10 and Lemma 6.11. To state and prove these claims, we
will assume that a POVM Λ is already provided, and no further mention of the set S will be made. Before we present
the actual protocol, we will first start with a bad protocol, which distils a small number of qubits and needs unbounded
communication. This protocol, although bad, will serve towards building intuition. We present this in Section 6.1.
The full description of KD_OneShotcan be found in the Sections 6.3 and 6.4.

Remark 6.2. An important feature of our ’achievable’ protocols will be that we will not require the use of local
randomness in the form of πAmix and πBmix , neither will we need Bob to borrow ancilla qubits. We will also not need
Alice or Bob to use local completely dephasing channels, although they will of course need access to the dephasing
channel which sends messages from Alice to Bob. Nevertheless, we will show that our achievable protocols will be
almost optimal, in the sense that they will be able to recover pure qubit states almost at the optimal rate given in
Theorem 5.4.

Thus, in all that follows, the registers Amix, Bmix and Cbob will be omitted. In the interest of brevity we thus
abbreviate the register Calice to just C.

6.1 The Need for Measurement Compression

In this section we will introduce a ‘bad’ protocol for distributed purity distillation which is not optimal with respect to
the number of pure qubit states that it distils, but nevertheless helps in understanding some of the key ideas that lead
to the other optimal protocol construction that follow in later sections. For the purposes of this demonstration we will
not put a bound on classical communication.

We remind the reader of Fact 4.2, restated here for convenience, which we shall use throughout the rest of the
paper:

Fact 6.3. Given a quantum state ρA, there exists an ε purity distillation code, which takes the form a unitary operator
UA, which is almost optimal.

To setup the protocol, we recall the setup of the distributed purity distillation problem, modified suitably according
to the statements made in Remark 6.2:

1. Alice and Bob share the state ρAB at the beginning of the protocol, where Alice has access to the system A and
Bob has access to the system B. Alice is also given the POVM

{
ΛA→X
x

}
which has outcomes x from the set of

symbols X .

23



2. Alice can borrow any number of qubits |0⟩ as ancilla, but has to account for them at the end of the protocol. For
example, Alice can choose to act the POVM Λ on the system A, but she has to do this coherently by borrowing
log |X | number of qubits.

3. Suppose Alice borrows the ancilla qubits in the system C. Then she is allowed to perform any local unitary of
the following form:

UALICE : AC → ApAgXA.

The system Ap is meant to hold the pure states that Alice distils on her end. Note that as per Remark 6.2, our
protocol will not require Alice to have access to private randomness or local completely dephasing maps.

4. Alice and Bob share a completely dephasing channel, i.e. a CPTP map P : XA → XB where the systems XA

and XB are isomorphic. The action of the map is described with respect to a fixed basis
{
|x⟩XA

}
:

P
(
ρXA

)
=
∑
x

⟨x|ρ|x⟩ |x⟩ ⟨x|XB

The choice of basis can be fixed by Alice and Bob before the protocol starts.

5. Bob is allowed to use local unitaries on the systems in his possession, i.e., he is allowed to use unitaries of the
following sort:

UBOB : BXB → BpBg

where the system Bp is meant to hold the pure states that he distils. Note that as per Remark 6.2, our protocol
will not require Bob to have access to local pure states, private randomness or local completely dephasing maps.

We require that at the end of the protocol, the state σApBp should satisfy the following constraint:∥∥∥σApBp − |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|
Bp

∥∥∥
1
≤ ε

For the purposes of this section we will assume that XA
∼= XB

∼= X . The protocol itself is given in Table 3.

**Here (see Table 3) the unitary operators Ux and Vx are given by Fact 6.3. Let us analyse Protocol A. We claim
the following proposition:

Proposition 6.4. Protocol A produces

log |A| −Hε2

H (A|X) + log |B| −Hε2

H (B|X)− log |X | −O
(
log

1

ε

)
number of pure qubit states.

Proof. First, fix an x ∈ X , and consider the Schmidt decomposition of the state |ρx⟩ABR:

|ρx⟩ABR =
∑
s

λs |s⟩A |s⟩BR .

Consider the set of the smallest λs whose squares add up to at most ε. Let us call this set BAD. The action of Ux is to
relabel those |s⟩A which have a corresponding λs which is not in BAD:

Ux : |s⟩A → |s⟩Ag |0⟩Ap ∀ |s⟩ such that λs /∈ BAD.

The vector |s⟩Ag is simply a low dimensional embedding of |s⟩A into the system Ag, which has dimension at least
2H̃

ε
H(A)−1. This embedding preserves the pairwise inner products between the vectors, i.e., for all s, s′ such that

λs, λs′ /∈ BAD:
⟨s|s′⟩Ag = ⟨s|s′⟩A .
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Alice Bob

Borrow log |X | qubits as pure ancilla.

Act the POVM ΛA→X coherently on |ρ⟩ABR

State : |ρ⟩XAABR :=
∑
x∈X
|x⟩XA

√
ΛA
x |ρ⟩

ABR

Define: |ρx⟩ABR := 1√
Tr[ΛA

x ρA]

√
Λx |ρ⟩ABR

**Define: UA→ApAg
x be the locally optimal local

purity distillation protocol for ρAx

Act unitary
∑
x∈X
|x⟩ ⟨x|XA ⊗ UA→ApAg

x

on state |ρ⟩XAABR

XA→XB−−−−−−→
End of Alice’s Actions

State on XBB:
ρXBB :=

∑
x
PX(x) |x⟩ ⟨x|XB ⊗ ρBx

**Define: V B→BpBg
x be the locally optimal local

purity distillation protocol for ρBx

Act unitary
∑
x∈X
|x⟩ ⟨x|XB ⊗ V B→BpBg

x

on state ρXBB

Table 3: Protocol A

We can then write:

U
A→ApAg
x |ρx⟩ARB =

∑
s:λs /∈BAD

λs |0⟩Ap |s⟩Ag |s⟩RB + |JUNK⟩ApAgRB .

It is then not hard to see that∥∥∥∥∥∥∥∥Ux · ρARB
x − |0⟩ ⟨0|Ap ⊗

∑
s,s′

λs,λs′ /∈BAD

λsλs′ |s⟩ ⟨s′|
Ag ⊗ |s⟩ ⟨s′|RB

∥∥∥∥∥∥∥∥
1

≤ O(
√
ε).

Tracing out the system Ag and noting that the substate |0⟩ ⟨0|Ap ⊗
∑

sλs /∈BAD

λs |s⟩ ⟨s|RB is ε close to ρRB
x , one can see

that: ∥∥∥TrAg

[
Ux · ρARB

x

]
− |0⟩ ⟨0|Ap ⊗ ρRB

x

∥∥∥
1
≤ O(

√
ε).

Now, consider the cq state: ∑
x

PX(x) |x⟩ ⟨x|XA ⊗ ρAx ,
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where PX(x) is the probability of the outcome x when ρA is measured with the POVM Λ. Then, using Lemma 2.23
we see that there exists a subset of x’s, which we call SALICE such that

Pr
PX

[SALICE] ≥ 1− 2
√
ε

Hε
H(ρAx ) ≤ Hε2

H (A|X)− log ε ∀x ∈ SALICE.

Collating the arguments above, one can then see that the state on the system XBRB after Alice sends the system XA

through the dephasing channel satisfies the following property:∥∥∥∥∥∑
x

PX(x) |x⟩ ⟨x|XB ⊗ TrAg

[
Ux · ρARB

x

]
− |0⟩ ⟨0|Ap ⊗

(∑
x

PX(x) |x⟩ ⟨x|XB ⊗ ρRB
x

)∥∥∥∥∥
1

≤ O(
√
ε),

where the system Ap is constituted by Hε2

H (A|X)− log ε qubits. Another applpication of Lemma 2.23 shows us that
there exists a set SBOB such that

Pr
PX

[SBOB] ≥ 1− 2
√
ε

Hε
H(ρBx ) ≤ Hε2

H (B|X)− log ε ∀x ∈ SBOB.

where the entropic quantities in the expression above are computed with respect to the cq state
∑
x
PX(x) |x⟩ ⟨x|XB ⊗

ρBx . Therefore, using arguments that are similar to those we used in the case of Alice, we see that after Bob’s actions
and discarding the system Bg, the global state is O(

√
ε) close to pure states on the Ap and Bp system, where:

log |ApBp| ≥ log |AB| −Hε2

H (A|X)−Hε2

H (B|X) +O(log ε).

Recall however that we now have to adjust for the fact that Alice had borrowed log |X | qubits. Therefore, the net
number of pure qubits distills is:

log |ApBp| − log |C| ≥ log |AB| −Hε2

H (A|X)−Hε2

H (B|X)− log |X |+O(log ε).

This concludes the proof.

As mentioned earlier, the number of pure qubit states that Protocol A distils is nowhere near optimal. The is of
course due to the − log |X | term over which we have no control. To fix this issue, we need to replace the POVM
Λ with some other POVM Λ′ which has far fewer number of outcomes, yet still allows Alice and Bob to distil
log |A| −Hε

H(A|X) and log |B| −Hε
H(B|X) pure qubit states. This is exactly what the measurement compression

theorem allows us to do, as we explain in the next section.

6.2 Measurement Compression

As mentioned in the last section, the we need to replace the POVM Λ with a POVM Λ′ which has a much smaller
number of outcome, in order to increase the number of pure qubit states that Protocol A distils. However, an issue
with this strategy is that this new POVM may not allow Alice and Bob to individually distil log |A| −Hε

H(A|X) and
log |B| −Hε

H(B|X) pure qubits. The measurement compression theorem comes to our aid here. Thus in this section
we take a small detour from our exposition to state the measurement compression theorem. Suppose we are given a
bipartite quantum state ρAB and a POVM ΛA→X . To understand the action of this POVM on the state ρAB , consider
a purification |ρ⟩ABR. It can be shown (see [22]) that the global state, after the action of the POVM on the system A,
looks like ∑

x

PX(x) |x⟩ ⟨x|X ⊗ ρBR
x , (1)

where
ρBR
x :=

1

Tr
[
Λx |ρ⟩ ⟨ρ|ABR

] TrA [Λx |ρ⟩ ⟨ρ|ABR
]
.
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and PX(x) is the probability of the outcome x when ρA is measured using the POVM Λ. The goal of the measurement
compression theorem is to replace Λ by some other POVM Λ′A→Y such that the support size of the distribution PY

induced by Λ′ is much smaller than that of PX , yet the post measurement state
∑
y
PY (y) |y⟩ ⟨y|Y ⊗ ρBR

y is close

to the ideal post measurement state in Equation 1. This of course may not be possible with a single POVM Λ′ (the
distribution PX may not be compressible). However, the measurement compression theorem gets around this issue
by using multiple POVMs, indexed by k ∈ [K], each with a small number of outcomes. Which of these POVMs one
chooses to actually do the measurement is decided by picking k randomly. Let us refer to these ‘smaller’ POVMs
as ΘA(k) =

{
ΘA

1 (k),Θ
A
2 (k), . . . ,Θ

A
L(k)

}
, where L is the number of outcomes. The new measurement process can

then be encapsulated as follows:

1. Pick k R← [K].

2. Measure the register A of the state ρAB using the smaller POVM ΘA(k).
Suppose this measurement produces an outcome ℓ ∈ [L].

3. Map the symbol (k, ℓ) appropriately to an x ∈ X to recover the correct measurement outcome.

Roughly, the measurement compression theorem says that, as long as K and L are large enough, the procedure
above produces a post measurement state that is close to the ideal state in Equation 1. We give the precise statement
of the theorem below [5]:

Fact 6.5. Given the bipartite quantum state ρAB and the POVM {Λx}x where x ∈ X , let |ρ⟩ABR be some purification
of ρAB and the ideal post measurement state, when the A register of ρAB is measured using Λ is given by:∑

x

PX(x) |x⟩ ⟨x|X ⊗ ρBR
x .

Here PX is the distribution induced by the measurement on the set of symbols X . Suppose we are given integers K
and L. Then, as long as

logK + logL ≥ H ′ε4
max(X) +O(log

1

ε
)

logL ≥ Iε4max(X : RB) +O(log
1

ε
).

there exist POVMs ΘA(1),ΘA(2), . . .ΘA(K), where each POVM ΘA
k has outcomes in the set [L]

⋃
{⊥} (⊥ signifying

the outcome corresponding o failure), and a function

f : [K]× [L]→ X

such that ∥∥∥∥∥∥ρXBR −
∑
x

∑
k,ℓ

QKL(k, ℓ) · 1f(k,ℓ)=x |x⟩ ⟨x|X ⊗ σRB
f(k,ℓ)

∥∥∥∥∥∥
1

≤ O(ε).

where QK
ε1/4

≈ Unif [K], QL|k is the distribution induced on the set [L]
⋃
{⊥} by the POVM ΘA(k) and

σRB
f(k,ℓ) :=

1

Tr
[
ΘA

ℓ (k) |ρ⟩ ⟨ρ|
ARB

] TrA [ΘA
ℓ (k) |ρ⟩ ⟨ρ|

ARB
]
.

We will make us of a couple of other useful facts about measurement compression, specifically that the distribution
QKL is close to the uniform distribution on [K] × [L] and that for all (k, ℓ) in the support of QKL, the state σRB

k,ℓ is
close to ρRB

f(k,ℓ). We state these facts below:
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Fact 6.6. For all k in the support of the distribution QK , and for all ℓ in the support of the distribution QL | k (aside
from the outcome ⊥), it holds that ∥∥∥σRB

f(k,ℓ) − ρ
RB
f(k,ℓ)

∥∥∥
1
≤ O(ε).

Fact 6.7. Given the setup of Fact 6.5, it holds that

∥QKL −Unif [K]×Unif [L]∥1 ≤ O(ε1/2).

For a proof of these facts, see the proof of Proposition 4.1 in [5].

6.3 An Improvement in Protocol A: Protocol B

We can now use the measurement compression theorem to design a better protocol for purity distillation than Protocol
A. The idea is to make use of the two indices k and ℓ that are implicit in the measurement compression theorem. Recall
that the index of the POVM to be used in the measurement process is given by k. Naturally, Alice and Bob can use
this as shared randomness. Although shared randomness is not one of the resources that Alice and Bob are allowed
to have for purity distillation, we will soon get rid of it by derandomising. Next, Alice can measure her register A
using the POVM ΘA(k) indicated by the shared randomness. Since this POVM has only L outcomes, Alice needs
to borrow only L ≥ Iεmax(X : RB) + O(log 1

ε ) qubits, which is much smaller than log |X |. By the measurement
compression theorem this measurement process produces a state that is close to the ideal post measurement state if
Alice had measured with Λ, after the (k, ℓ) indeces have been mapped to appropriate values of x. Thus, one would
expect, via similar reasoning as that which we used to prove Lemma 2.23, that for most setting of (k, ℓ), it would hold
that:

Hε
H(ρAk,ℓ) ≤ Hε2

H (A|X)− log ε.

Alice can then send her L register to Bob via the dephasing channel. Via the same reasoning as above, we expect that
for most values of (k, ℓ) the following should hold:

Hε
H(ρBk,ℓ) ≤ Hε2

H (B|X)− log ε.

Modulo the two assumptions above, this would complete the description of the protocol. Note that the number of
qubit states produced by thus protocol would be roughly:

log |A| −Hε2

H (A|X) + log |B| −Hε2

H (B|X)− Iεmax(X : RB),

where we have suppressed the additive log ε terms. One can show that indeed our intuition is correct, as is shown by
the following lemma:

Lemma 6.8. Given the setup of the measurement compression theorem, there exists a subset S of [K]× [L] such that

|S| ≥ (1− ε1/8)KL

and for all (k, ℓ) ∈ S it holds that it holds that

H
O(ε1/8)
H (RB | k, ℓ) ≤ HO(ε)

H (RB | X) +O(log
1

ε
)

and

H
O(ε1/8)
H (B | k, ℓ) ≤ HO(ε)

H (B | X) +O(log
1

ε
).

The proof of this lemma is long but does not offer much further insight into the protocol. The reader can find it in
Appendix A. To describe our new protocol, we first list the necessary assumptions as required by Fact 6.5:

Assumption 6.9. Assumptions for Protocol B
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1. Alice and Bob are given a bipartite state ρAB with purification |ρ⟩ABR, and also a POVM Λ. The ideal post
measurement state when this POVM acts on the register A is given by:∑

x

PX(x) |x⟩ ⟨x| ⊗ ρBR
x .

2. There exist integers K and L such that

logK + logL ≥ H ′ε4
max(X) +O(log

1

ε
)

logL ≥ Iε4max(X : RB) +O(log
1

ε
).

3. Alice possesses the POVMs ΘA(1),ΘA(2), . . . ,ΘA(K) whose existence is implied by Fact 6.5. Each of these
POVMs produces outputs in the set [L]

⋃
{⊥}.

4. We will use the notation KAKB to denote a public coin register that is available to both Alice and Bob. We set
|KA| = |KB| = K. The register in which Alice will store the outcome of the measurement will be referred to
as LA.

5. There is a completely dephasing channel from Alice to Bob given by PLA→LB where LA
∼= LB .

6. The distribution on the public coin register is given by QK , as defined in Fact 6.5.

7. Given a POVM element ΘA
ℓ (k), we define

|ρk,ℓ⟩ABR :=
1√

Tr
[
ΘA

ℓ (k)ρ
ABR

]√ΘA
ℓ (k) |ρ⟩

ABR .

and its associated marginals of interest accordingly.

We now describe Protocol B in Table 4.

Proposition 6.10. Protocol B distils

log |A| −Hε
H(A | X) + log |B| −Hε

H(B | X)− Iε4max(X : RB) +O(log ε)

number of pure qubits with error O(ε1/16). The protocol also uses Iε
4

max(RB : X) + O(log 1
ε ) amount of classical

communication. The entropic quantities above are all computed with respect to the state∑
x

|x⟩ ⟨x|X ⊗ IRB ⊗ Λx

(
|ρ⟩ ⟨ρ|ABR

)
where |ρ⟩ABR is a purification of ρAB .

Proof. We will first invoke Lemma 6.8 to note that, for at least (1−O(ε1/8)) fraction of indices KL, it holds that

H
O(ε1/8)
H (ρRB

k,ℓ ) ≤ H
O(ε)
H (RB|X) +O(log

1

ε
).

Note that, for fixed (k, ℓ) we recover at least

log |A| −HO(ε1/8)
H (ρAk,ℓ)− 1

amount of purity. Next, we use the fact that for pure states, such as |ρk,ℓ⟩ARB , Lemma 2.16 implies that:

Hε1/8

H (ρAk,ℓ) = Hε1/8

H (ρRB
k,ℓ )
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Alice Bob

Shared public coin
in KAKB

Borrow Iε
4

max(X : RB) +O(log 1
ε )

pure ancilla qubits in system LA.

Apply the isometry∑
k |k⟩ ⟨k|

KA ⊗
∑

ℓ |ℓ⟩
LA

√
ΘA

ℓ (k)

on the system A.

Define Uk,ℓ as local optimal distillation
code for ρAk,ℓ.

Apply
∑

ℓ |ℓ⟩ ⟨ℓ|
LA ⊗ UA→ApAg

k,ℓ on ALA.

LA→LB−−−−−→
End of Alice’s Actions

Do locally optimal protocol on B
conditioned on the contents of KBLB .

Table 4: Protocol B

Thus, using the same arguments as we saw in the proof of Proposition 6.4, we can show that for all the pairs (k, ℓ)
which satisfy the above conditions, it holds that:∥∥∥TrAg

[
Uk,ℓ · ρARB

k,ℓ

]
− |0⟩ ⟨0|Ap ⊗ ρRB

k,ℓ

∥∥∥
1
≤ O(

√
ε).

where the system Ap consists of log |A| −Hε1/4

H (RB|X) + O(log ε) − O(1) qubits. We can then conclude that the
global state after Alice sends the system LA through the dephasing channel satisfies the following condition:∥∥∥∥∥∥

∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|LA ⊗ TrAg

[
Uk,ℓ · ρARB

k,ℓ

]

− |0⟩ ⟨0|Ap ⊗
∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|LA ⊗ ρRB
k,ℓ

∥∥∥∥∥∥
1

≤ O(ε1/8)

where we have used the fact that the distribution QKL is O(ε1/2) to the uniform distribution on [K] × [L] (see Fact
6.7). Thus, on her side, Alice distils at least

|Ap| ≥ log |A| −Hε1/4

H (RB|X) +O(log ε)−O(1)

amount of purity.
To analyse Bob’s actions, we again invoke Lemma 6.8 and recall that, for at least 1− O(ε1/8) fraction of indices

KL, it holds that

H
O(ε1/8)
H (ρBk,ℓ) ≤ H

O(ε)
H (B | X) +O(log

1

ε
).
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This implies that, for most indices k and ℓ, there exists a local unitary V B→BpBg

k,ℓ such that∥∥∥TrBg

[
Vk,ℓ · ρBk,ℓ

]
− |0⟩ ⟨0|Bp

∥∥∥
1
≤ O(

√
ε)

where we see that
|Bp| ≥ |B| −HO(ε)

H (B|X) +O(log ε)−O(1).

Then, using the fact that the distribution QKL is O(ε1/2) close to the uniform distribution on [K] × [L] and the
arguments we used for Alice’s actions, we see that the following holds:∥∥∥∥∥∥

∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|LA ⊗ TrAgBgR

[
Vk,ℓ ⊗ Uk,ℓ · ρARB

k,ℓ

]

− |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp ⊗

∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|LA

∥∥∥∥∥∥
1

≤ ε1/16

Tracing out all registers but the systems ApBp implies the result, where we see that the net number of pure qubits that
Protocol B distilled is given by:

log |A| −HO(ε)
H (RB|X) + log |B| −HO(ε)

H (B|X)− Iε4max(X : RB) +O(log ε)−O(1).

It is not hard to show that for states of the form∑
x

|x⟩ ⟨x|X ⊗ IRB ⊗ Λx

(
|ρ⟩ ⟨ρ|ABR

)
it holds that

Hδ
H(RB|X) = Hδ

H(A|X).

Plugging this in into the above expression, the result follows. The claim about the number of bits of classcial commu-
nication used by Protocol B follows directly from its specification. This concludes the proof.

6.4 Removing the Public Coin from Protocol B: KD_OneShot

In this section we derandomise Protocol B by removing the public coin registers KAKB to obtain KD_OneShot. We
show this in the following lemma:

Lemma 6.11. Given the setting of Proposition 6.10, there exists a subset T ⊆ [K] of size at least (1− O(ε1/32))K,
such that for any k ∈ T , if Alice runs Protocol B with only the POVM corresponding to this k, the resulting protocol,
called KD_OneShot, distils as many pure qubits as Protocol B.

Proof. Recall that in Protocol B at the end of Bob’s actions, the global state satisfied the following property:∥∥∥∥∥∥
∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|L ⊗ TrAgBgR

[
Vk,ℓ ⊗ Uk,ℓ · ρARB

k,ℓ

]

− |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp ⊗

∑
k,ℓ

QKL(k, ℓ) |k⟩ ⟨k|K ⊗ |ℓ⟩ ⟨ℓ|L
∥∥∥∥∥∥ ≤ ε1/16

To derandomise the above protocol, we define

σ
ApBp

k :=
∑
ℓ

QL | k(ℓ | k) TrAgBgR

[
Vk,ℓ ⊗ Uk,ℓ · ρARB

k,ℓ

]
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Then, using block diagonality, we see that∑
k

QK(k)
∥∥∥σApBp

k − |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp

∥∥∥ ≤ ε1/16.
This immediately proves that there exists a k such that if we run the protocol for only that fixed k, Alice and Bob distil
the same amount of purity as in the protocol with shared randomness, while making an error at most ε1/16. In fact,
since QK is O(ε1/2) close to the uniform distribution on [K], this implies that at least 1−O(ε1/32) fraction of k’s in
[K] satisfy this property. This concludes the proof.

7 The Protocol With Small Ancilla

In the previous section, we proved a lower bound on κ→ε (ρAB, Cclassical). We did this by first fixing a POVM ΛA on the
system A, then using the KD_OneShotprotocol to extract roughly log |AB| −Hε

H(A|X)−Hε
H(B|X)− Iε4max(X :

RB) pure qubits. In the process Alice was required to borrow roughly Iε
4

max(X : RB) many ancilla qubits. The
lower bound on κ→ε (ρAB, Cclassical) was then obtained by taking an infimum over the POVMs Λ over the subset S (see
Theorem 5.4 for specifics).

In this section we show that, given the same fixed POVM Λ, there exists a protocol which we call FewQubits ,
which uses far fewer ancilla qubits than KD_OneShot, yet manages to distil the pure qubits at the same rate as that of
KD_OneShot. In fact, we show in Corollary 8.1 in Section 8 that FewQubits outperforms KD_OneShotin terms
of the number of qubits borrowed by Alice, as long as ρA is not very close to the maximally mixed state. We also
show in Corollary 8.2 in Section 8 that in the case when unbounded classical communication is allowed, FewQubits
always outperforms KD_OneShot.

We state the main theorem of this section below, which shows the existence of the FewQubits protocol. As in
Section 6, we assume that we are given a fixed POVM Λ to state and prove our results.

Theorem 7.1. Main Theorem Consider a bipartite state ρAB shared between two parties Alice and Bob, and a
POVM {Λx}x where the symbol x belongs to a set of symbols X . Let |ρ⟩ABR be a purification of ρAB . Consider the
control state

ρABRX :=
∑
x

|x⟩ ⟨x|X ⊗ ΛA
x

(
|ρ⟩ ⟨ρ|ABR

)
.

Let us refer to the number of pure qubits that Alice and Bob can distil as PurityALICE and PurityBOB. Then, there
exists a protocol FewQubits where Alice and Bob are allowed only local unitary operations, and one way classical
communication from Alice to Bob such that:

1. Case I: If Iε
4

max(RB : X) +H
O(ε)
H (RB|X) − O(log ε) ≤ log |A|, they are able to distil the following number

of pure qubits:

PurityALICE ≥ log |A| − Iε4max(RB : X) +H
O(ε)
H (RB|X) +O(log ε),

PurityBOB ≥ log |B| −Hε2

H (B|X) +O(log ε).

while borrowing at most O(log 1
ε ) ancilla qubits.

2. Case II: If Iε
4

max(RB : X) +H
O(ε)
H (RB|X)−O(log ε) > log |A|, they are able to distil

PurityALICE = 0,

PurityBOB ≥ log |B| −Hε2

H (B|X)−∆(RB|X) +O(log ε).

while borrowing at most ∆(RB|X) := Hε2

H (RB|X)−HO(ε)
min (RB|X)−O(log ε) many qubits.

All entropic quantities above are computed with respect to the control state.
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Proof. The proof is implied by Lemma 7.4 and Lemma 7.5.

Our main task now is to prove Lemma 7.4 and 7.5. To do this, let us start by examining Alice’s actions in Protocol
C, as described in the last section (see Lemma 6.11). To recap, Alice and Bob share a public coin register K, and
based on the contents of K, Alice implements a POVM ΘA(k) coherently on her system A. She stores the outcome
of this measurement a system LA which she creates by borrowing roughly Iε

4

max(X : RB) qubits, where the entropic
quantity is computed with respect to a control state∑

x

|x⟩ ⟨x|X ⊗ ΛA
x

(
|ρ⟩ ⟨ρ|ABR

)
.

Alice then performs a locally optimal distillation protocol on the state ρAk,ℓ using the unitary UA
k,ℓ. For most values of k

and the measurement outcome ℓ, the measurement compression theorem then implies that the number of pure qubits
that Alice distils is at least log |A| −Hε2

H (A|X) (suppressing the additive O(log ε) term).
Later, we derandomised and showed that the public coin register is actually not necessary and for most settings

(1−O(ε1/32) fraction) of the public coin k, the corresponding POVM ΘA(k) does as well as the randomised protocol.
Alice can then choose any of the k from the set T (see Lemma 6.11 for the definition of T ) and run the protocol suing
the fixed POVM ΘA(k).

Our goal in this section will be to implement the action of ΘA(k) in place, that is, by borrowing little to no ancilla
qubits. To do this we require ΘA(k) to have the property that for most outcomes ℓ ∈ [L]

⋃
{⊥}, corresponding to the

POVM element ΘA
ℓ (k), it holds that:

Hε
H(ρRB

k,ℓ ) ≤ H
O(ε)
H (RB | X) +O(log

1

ε
)

and

Hε
H(ρBk,ℓ) ≤ H

O(ε)
H (B | X) +O(log

1

ε
),

where we define:

ρRB
k,ℓ := TrA

√
ΘA

ℓ (k) · |ρ⟩ ⟨ρ|
ABR

Tr
[
ΘA

ℓ (k) |ρ⟩ ⟨ρ|
ABR

]
for some purification |ρ⟩ABR of ρAB . That such a POVM exists is shown below via Lemma 7.2 and Claim 7.3.

Lemma 7.2. For the setting of Lemma 6.8, there exists a subset T ′ ⊆ [K] of size at least (1−ε1/16)K, such that for all
k ∈ T ′, there exists a subset NICEL | k ⊆ [L] of size at least (1− ε1/16)L such that for all k ∈ T ′ and ℓ ∈ NICEL | k:

H
O(ε1/8)
H (RB | k, ℓ) ≤ HO(ε)

H (RB | X) +O(log
1

ε
)

and

H
O(ε1/8)
H (B | k, ℓ) ≤ HO(ε)

H (B | X) +O(log
1

ε
).

.

Claim 7.3. Consider the setting of Lemma 6.11. There exists a k ∈ T such that the corresponding POVM ΘA(k)
satisfies the requirements of Lemma 7.2.

The proofs of Lemma 7.2 and Claim 7.3 can be found in Appendix C. The next idea is that the states ρAB
k,ℓ ,

for all ℓ ∈ NICEL | k, can be perturbed to a nearby state ρ̃RB
k,ℓ by throwing away the smallest eigenvalues which

sum to O(ε1/8). We can then consider a purification |ρ̃k,ℓ⟩AgRB of ρRB
k,ℓ , where this system Ag requires only

exp
(
H

O(ε)
H (RB|X)

)
dimensions.
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The key idea then is to define an embedding of the systems LA (which holds the measurement outcomes) and
the system Ag into a space of dimension roughly exp

(
Iε

4

max(RB : X) +H
O(ε)
H (RB|X)

)
. We do this by defining

an appropriate pure state on the systems ApLAAgRB using the states |ρ̃⟩AgRB , and then using Uhlmann’s theorem.
This Uhlmann isometry gives us Alice’s required unitary. Some care is necessary here since not all ρRB

k,ℓ have the nice
property we need to define the states |ρ̃⟩AgRB . A detailed exposition of these ideas can be found in the proof of the
lemma below:

Lemma 7.4. Suppose that

Iε
4

max(RB : X) +H
O(ε)
H (RB|X)−O(log ε) ≤ log |A| ,

where all the entropic quantities are computed with respect to the control state:∑
x

|x⟩ ⟨x|X ⊗ ΛA
x

(
|ρ⟩ ⟨ρ|ABR

)
,

where |ρ⟩ABR is a purification of ρAB . Then there exists a unitary operator UA→ApAgLA and a system Ag such that:∥∥∥TrAgBg

[
V ◦ P ◦ U

(
ρAB

)]
− |0⟩ ⟨0|Ap ⊗ |0⟩ ⟨0|Bp

∥∥∥
1
≤ ε1/16,

log |Ap| ≥ log |A| − Iε4max(RB : X) +H
O(ε)
H (RB|X) +O(log ε)− 1,

log |Bp| ≥ log |B| −Hε2

H (B|X) +O(log ε).

where V LBB→BpBg encapsulates Bob’s unitary operations.

Proof. Let us start with the POVM ΘA(k) which satisfies the requirements of both Lemma 7.2 and Lemma 6.11. That
such a k ∈ [K] and ΘA(k) exist is shown in Claim 7.3.

For ease of notation, we henceforth omit the k throughout this proof. This means that we will refer to ΘA(k)
simply as ΘA and the set NICEL | k (as given by Lemma 7.2) simply as NICEL.

We define:

ρRB
ℓ :=

TrA

[
ΘA

ℓ |ρ⟩ ⟨ρ|
ABR

]
PΘ(ℓ)

,

for all ℓ ∈ [L]
⋃
{⊥}, where

PΘ(ℓ) := Tr
[
ΘA

ℓ |ρ⟩ ⟨ρ|
ABR

]
.

We will show that the substate
∑

ℓ∈NICEL

PΘ(ℓ)ρ
RB
ℓ is close to the state

∑
ℓ∈[L]

⋃
{⊥}

PΘ(ℓ)ρ
RB
ℓ . To see this, first recall

from the construction of ΘA in [5] that, for all ℓ ̸= ⊥,

ΘA
ℓ =

1

1 +O(ε1/4)
· 1
L
·
(
ρ−1/2σℓρ

−1/2
)A

where the operator ρ is equivalent to the marginal ρA of the state ρAB on the system A, and σℓ is a state which arises
during the construction, but will not be important in the context of this proof. Also recall that by construction,

Tr
[
ΘA

⊥ |ρ⟩ ⟨ρ|
ABR

]
≤ O(ε).
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Then consider the following: ∥∥∥∥∥∥
∑

ℓ∈NICEL

PΘ(ℓ)ρ
RB
ℓ −

∑
ℓ∈[L]

⋃
{⊥}

PΘ(ℓ)ρ
RB
ℓ

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑

ℓ∈NICEcL
⋃

⊥

PΘ(ℓ)ρ
RB
ℓ

∥∥∥∥∥∥
1

≤
∑

ℓ∈NICEcL

∥∥∥TrA [ΘA
ℓ |ρ⟩ ⟨ρ|

ABR
]∥∥∥

1
+
∥∥∥TrA [ΘA

⊥ |ρ⟩ ⟨ρ|
ABR

]∥∥∥
1

(a)
=

∑
ℓ∈NICEcL

Tr
[
ΘA

ℓ ρ
A
]
+Tr

[
ΘA

⊥ρ
A
]

=
∑

ℓ∈NICEcL

1

1 +O(ε1/4)
· 1
L
· Tr [σℓ] + Tr

[
ΘA

⊥ρ
A
]

(b)

≤ 1

1 +O(ε1/4)
·
|NICEc

L|
L

+O(ε)

(c)

≤ ε1/16

1 +O(ε1/4)
+O(ε)

≤ O(ε1/16),

where in step (a) we have used the fact that the 1-norm of a positive semidefinite matrix is equal to its trace and
subsequently traced out the systems RB, in step (b) we have used the upper bound on Tr

[
ΘA

⊥ |ρ⟩ ⟨ρ|
ABR

]
and also

the structure of the POVM element ΘA
ℓ for ℓ ̸= ⊥. In step (c) we have used Lemma 7.2 to bound the size of the set

NICEc
L.

An immediate consequence of the above calculation is that:∑
ℓ∈NICEcL

⋃
{⊥}

PΘ(ℓ) ≤ O(ε1/16).

We then define:

P̃Θ(ℓ) :=
PΘ(ℓ)∑

ℓ∈NICEL

PΘ(ℓ)
∀ℓ ∈ NICEL.

It is then not hard to see via Lemma 2.1 in [9] that:∥∥∥∥∥∥
∑

ℓ∈NICEL

P̃Θ(ℓ)ρ
RB
ℓ −

∑
ℓ∈[L]

⋃
{⊥}

PΘ(ℓ)ρ
RB
ℓ

∥∥∥∥∥∥
1

≤ O(ε1/16).

We will now invoke Lemma 7.2 and the definition of the set NICEL to see that for all ℓ ∈ NICEL,

H
O(ε1/8)
H (ρRB

ℓ ) ≤ HO(ε)
H (RB | X) +O(log

1

ε
).

Define

ρ̃ℓ
RB :=

√
Πℓρ

RB
ℓ

√
Πℓ

Tr
[
Πℓρ

RB
ℓ

] ,
where the operator ΠRB

ℓ arises in the definition ofHO(ε1/8)
H (ρRB

ℓ ). Note that from [16] we know that for any state ρRB
ℓ ,

the expression HO(ε1/8)
H (ρRB

ℓ ) is optimised by an operator which commutes with ρRB
ℓ and which has all eigenvalues 1

aside from maybe the smallest eigenvalue. Furthermore, the 0 eigenvalues of Πℓ coincide with the smallest eigenvalues
of ρRB

ℓ which add up to at most O(ε1/8) ( see [16] for a proof of these properties). These properties imply the
following:
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1. The states ρ̃RB
ℓ for all ℓ ∈ NICEL are close to ρRB

ℓ . To be precise:

∥ρ̃ℓ − ρℓ∥1

=

∥∥∥∥√Πℓρℓ
√
Πℓ

Tr [Πℓρℓ]
− ρℓ

∥∥∥∥
1

(a)

≤ O(ε1/16),

where in step (a) we have used the fact that Tr [Πℓρℓ] ≥ 1 − ε1/8 (by definition of Πℓ for all ℓ ∈ NICEL) and
the Gentle Measurement Lemma.

2. The size support of the support of ρ̃RB
ℓ is bounded above by 2H

O(ε1/8)
H (ρRB

ℓ ) + 1. To see this, note that

rank(Πℓ) ≤ Tr [Πℓ] + 1.

Since Tr [Πℓ] = 2H
O(ε1/8)
H (ρRB

ℓ ), the claim follows.

A hybrid argument then shows that:∥∥∥∥∥∥
∑

ℓ∈NICEL

P̃Θ(ℓ)ρ̃
RB
ℓ −

∑
ℓ∈[L]

⋃
{⊥}

PΘ(ℓ)ρ
RB
ℓ

∥∥∥∥∥∥
1

≤ O(ε1/16).

Finally, note that the action of ΘA on is that of a CPTP map with Kraus operators |ℓ⟩LA
√
Θℓ

A, followed by the trace
out operation on the system A. Therefore, this cannot change the marginal on the system RB, which implies that∑

ℓ∈[L]
⋃
{⊥}

PΘ(ℓ)ρ
RB
ℓ = ρRB.

This gives us the following inequality:∥∥∥∥∥∥
∑

ℓ∈NICEL

P̃Θ(ℓ)ρ̃
RB
ℓ − ρRB

∥∥∥∥∥∥
1

≤ O(ε1/16). (3)

We will now define, for all ℓ ∈ NICEL, the purification |ρ̃ℓ⟩AgRB of the state ρ̃RB
ℓ . Here, the system Ag is a system

of dimension 2H
O(ε1/8)
H (ρRB

ℓ ) + 1, which is sufficient by the arguments presented in Item 2. It is important to point out
that we use the same space Ag to purify all the states ρ̃RB

ℓ .
We further define the pure state:

|ρ̃⟩LAAgRB :=
∑

ℓ∈NICEL

√
P̃Θ(ℓ) |ℓ⟩LA |ρ̃ℓ⟩AgRB .

Note that since ΘA has at most exp
(
Iε

4

max(X : RB)−O(log ε)
)

outcomes (we absorb the additive 1 due to the ⊥
outcome in the O(log 1

ε ) term), the system LAAg is of log dimension:

log |LAAg| = Iε
4

max(X : RB) +H
O(ε1/8)
H (ρRB

ℓ ) +O(log
1

ε
) +O(1)

(a)

≤ Iε
4

max(X : RB) +H
O(ε)
H (RB | X) +O(log

1

ε
)

(b)

≤ log |A| ,
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where for the step (a) we have used Lemma 7.2, and step (b) is by the hypothesis of the lemma. This implies that
there exists a system Ap of log dimension at least log |A| − Iε4max(X : RB)−HO(ε)

H (RB |X)−O(log 1
ε ), such that:

ApLAAg
∼= A.

We then define the pure state:
|≈ρ⟩LAApAgRB

:= |0⟩Ap |ρ̃⟩LAAgRB .

Note that by Equation 3,
≈
ρRB O(ε1/16)

≈ ρRB.

Therefore, by Uhlmann’s theorem, there exists a unitary operator UΘ : A→ LAApAg such that:∥∥∥|≈ρ⟩ ⟨≈ρ|LAApAgRB − UA→LAApAg

Θ · |ρ⟩ ⟨ρ|ARB
∥∥∥
1

=
∥∥∥|0⟩ ⟨0|Ap ⊗ |ρ̃⟩ ⟨ρ̃|LAAgRB − UA→LAApAg

Θ · |ρ⟩ ⟨ρ|ARB
∥∥∥
1

≤ O(ε1/32)

Next, Alice sends the LA system through the channel PLA→LB . Then, the following holds by the monotonicity of the
1-norm: (

PLA→LB ◦ TrAg ◦ U
A→LAApAg

Θ

)
· |ρ⟩ ⟨ρ|ARB

O(ε1/32)
≈ |0⟩ ⟨0|Ap ⊗

 ∑
ℓ∈NICEL

P̃Θ(ℓ) |ℓ⟩ ⟨ℓ|LB ⊗ ρ̃RB
ℓ

 .

Tracing out the system R and by previous arguments, it is then easy to see that:∑
ℓ∈NICEL

P̃Θ(ℓ) |ℓ⟩ ⟨ℓ|LB ⊗ ρ̃Bℓ

O(ε1/16)
≈

∑
ℓ∈NICEL

P̃Θ(ℓ) |ℓ⟩ ⟨ℓ|LB ⊗ ρBℓ

Then, invoking Lemma 7.2, we see that for all ρBℓ in the above expression, it holds that:

H
O(ε1/8)
H (ρBℓ ) ≤ H

O(ε)
H (B | X) +O(log

1

ε
).

Bob can then enact the conditional unitary:

V LBB→BpBg =
∑

ℓ∈[LB ]

|ℓ⟩ ⟨ℓ|LB ⊗ V B→BpBg

ℓ ,

where B ∼= BpBg. We define the unitary operators V B→BpBg

ℓ as follows:

1. For all ℓ ∈ NICEL, V B→BpBg

ℓ performs the locally optimal purity distillation protocol for the state ρBℓ with error
O(ε1/16).

2. For all ℓ ∈ [LB] \ NICEL, set V B→BpBg

ℓ = I, where I denotes the natural isomorphism between the spaces B
and BpBg.

37



Then it holds that:

V LBB→BpBg ·

 ∑
ℓ∈NICEL

P̃Θ(ℓ) |ℓ⟩ ⟨ℓ|LB ⊗ ρBℓ


O(ε1/16)
≈ |0⟩ ⟨0|Bp ⊗

 ∑
ℓ∈NICEL

P̃Θ(ℓ) |ℓ⟩ ⟨ℓ|LB ⊗ ρ′Bg

ℓ

 ,

where ρ′Bg

ℓ is the state on the Bg system remnant after the locally optimal protocol has been enacted on ρBℓ . Note that
the system Bp has log dimension at least:

log |Bp| ≥ log |B| −HO(ε)
H (B | X)−O(log

1

ε
).

The argument is completed by stringing together all of the above inequalities via a hybrid argument and using the
monotonicity of the 1-norm. This concludes the proof.

We will now deal with the case when

Iε
4

max(RB : X) +H
O(ε)
H (RB|X)−O(log ε) > log |A| .

It may happen that for some cases Iε
4

max(RB : X) + H
O(ε)
H (RB|X) − O(log ε) exceeds log |A|. In that case,

Alice cannot distil any pure qubits. Indeed, she has to borrow some qubits to even implement the unitary UA
Θ , which

we constructed in Lemma 7.4. However, she will be able to implement the unitary UA
Θ following the same recipe that

we showed in Lemma 7.4 if she borrows:

Iε
4

max(RB : X) +H
O(ε)
H (RB|X)−O(log ε)− log |A|

qubits. In this case we will use the following bound on Iε
4

max(RB : X) which was shown in [2]:

Iε
4

max(RB : X) ≤ HO(ε8)
max (RB)−HO(ε8)

min (RB|X)−O(log ε)

≤ HO(ε8)
H (A)−HO(ε8)

min (RB|X)−O(log ε)

≤ log |A| −HO(ε8)
min (RB|X)−O(log ε).

Therefore, in this case, Alice would have to borrow at most

∆(RB|X) := H
O(ε)
H (RB|X)−HO(ε8)

min (RB|X)−O(log ε)

many qubits. We state this as a lemma below:

Lemma 7.5. Given the setting of Lemma 7.4, suppose that

Iε
4

max(RB : X) +H
O(ε)
H (RB|X)−O(log ε) > log |A| .

In this case, Alice can implement the unitary UA→LAAg defined in Lemma 7.4 by borrowing at most

∆(RB|X) := H
O(ε)
H (RB|X)−HO(ε8)

min (RB|X)−O(log ε)

many qubits. Note that there is no Ap system for this case since Alice cannot distil any pure qubits by herself. The net
purity that Alice and Bob together distil is given by:

log |B| −Hε2

H (B|X)−∆(RB|X) +O(log ε).

Note that in the asymptotic iid limit, the case dealt with in Lemma 7.5 does not occur. We conclude by for-
mally showing that FewQubits borrows fewer pure qubits than Protocol C in the worst case, as long as log |A| −
H

O(ε)
H (A) ≥ O(log 1

ε ), i.e., when the state on the system A is even nominally away from maximally mixed:
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8 Comparative Analysis of FewQubits

In this section we compare the performance of FewQubits to that of KD_OneShot, both in the general case of
bounded communication and in the case when unbounded classical communication is allowed. We show that in both
cases, as long as ρA is not too close to the maximally mixed state, FewQubits outperforms KD_OneShot. We
state our results as Corollaries 8.1 and 8.2 below, the proofs of which follow as corollaries from Theorem 7.1.

Corollary 8.1. FewQubits borrows fewer qubits as compared to KD_OneShotas long as log |A| −HO(ε)
H (A) ≥

O(log 1
ε ).

Proof. Recall that KD_OneShotrequires Alice to borrow Cborrow := Iε
4

max(RB : X) + O(log 1
ε ) number of pure

qubits to function. On the other hand, FewQubits requires Alice to borrow

Dborrow := max

{
0, Iε

4

max(RB : X) +H
O(ε)
H (RB|X)− log |A|+O(log

1

ε
)

}
qubits. Clearly,

Cborrow −Dborrow

≥ log |A| −Hε
H(RB | X)−O(log

1

ε
)

≥ log |A| −Hε
H(RB)−O(log

1

ε
)

= log |A| −Hε
H(A)−O(log

1

ε
).

where we have used the data-processing inequality to show that HO(ε)
H (RB | X) ≤ H

O(ε)
H (RB) and Lemma 2.16 to

show that HO(ε)
H (RB) = H

O(ε)
H (A). Therefore the corollary holds as long as log |A| −HO(ε)

H (A) ≥ O(log 1
ε ). This

concludes the proof.

Corollary 8.2. Given the setup of Theorem 7.1, suppose that the POVM {Λx}x has rank-1 elements. Then FewQubits
guarantees the following:

PurityALICE ≥ log |A| −HO(ε8)
H (A) +O(log ε)

PurityBOB ≥ log |B| −Hε2

H (B) +O(log ε)

and the number of qubits that Alice is required to borrow to run the protocol is at most O(log 1
ε ).

Proof. First note that the global state is the pure state |ρ⟩ABR =
∑
i
si |i⟩A |i⟩RB . It is given that the POVM Λ is

rank-1, i.e. it is constituted by operators of the form {|φx⟩ ⟨φx|}x. Note that each vector |φx⟩ has 2-norm at most 1.
This is simply because each operator |φx⟩ ⟨φx|A ≤ IA (by the definition of a POVM). By definition of the action of
the POVM, the post measurement state ρXBR is given by:∑

x

|x⟩ ⟨x|X ⊗ TrA

[(
IRB ⊗ |φx⟩ ⟨φx|A

)
|ρ⟩ ⟨ρ|ABR

]
=
∑
x

|x⟩ ⟨x|X ⊗ TrA

[(
IRB ⊗

√
|φx⟩ ⟨φx|A

)
· |ρ⟩ ⟨ρ|ABR

]
.

Note that: (
IRB ⊗

√
|φx⟩ ⟨φx|A

)
|ρ⟩ABR =

(
IRB ⊗

√
|φx⟩ ⟨φx|A

)∑
i

si |i⟩A |i⟩BR

= |φ̃x⟩A
(∑

i

si ⟨φx|i⟩ |i⟩BR

)
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where |φ̃x⟩A is the normalised version of the vector |φx⟩A and we have used the fact that
√
|φx⟩ ⟨φx|A = |φ̃x⟩ ⟨φx|A.

It is easy to see that: ∥∥∥∥∥∑
i

si ⟨φx|i⟩ |i⟩BR

∥∥∥∥∥
2

2

=
∑
i

s2i |⟨φx|i⟩|2

= Tr
[
|φx⟩ ⟨φx|A ρA

]
:= PX(x).

Then, defining |ψx⟩BR to be the normalised version of the vector
∑
i
si ⟨φx|i⟩ |i⟩RB we can rewrite the post measure-

ment state ρXBR as:
ρXBR =

∑
x

PX(x) |x⟩ ⟨x|X ⊗ |ψx⟩ ⟨ψx|BR .

We know from Lemma 2.24 that for states of this form, it holds thatHε
H(RB |X) ≤ 0. This implies that for this case:

Iε
4

max(RB | X) +H
O(ε)
H (RB | X) +O(log

1

ε
)

≤ Iε4max(RB | X) +O(log
1

ε
)

≤ HO(ε8)
max (A) +O(log

1

ε
).

where the last line follows from Lemma B.17, [3]. Therefore, by Theorem 7.1 this implies that in this case Alice needs
to borrow at most O(log 1

ε ) ancilla qubits for FewQubits to work. This concludes the proof.
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Appendix A Proof of Lemma 6.8

Before we go on to the main proof, we will prove another lemma which will be useful in the main proof of Lemma
6.8.

Lemma A.1. Consider the set of classical symbols X and let X be a register which holds symbols from this set. Let
B be a quantum register. Suppose that we are given two classical quantum states ρXB and σXB as follows:

ρXB :=
∑
x

PX(x) |x⟩ ⟨x|X ⊗ ρBx

σXB :=
∑
x

QX(x) |x⟩ ⟨x|X ⊗ σBx

with the promise that for all x ∈ X it holds that
∥∥σBx − ρBx ∥∥1 ≤ ε and ∥PX −QX∥1 ≤ ε. Next, let K be an integer

and suppose that we are given a deterministic function f : [K] → X . Suppose there exists a distribution QK on [K]
such that the following holds:

∥QK −Unif [K]∥1 ≤ δ∑
k:f(k)=x

QK(k) = QX(x) ∀x ∈ X .

Let us also define, for all k ∈ [K], the states σBk := σBf(k). Then, at least 1− ε1/8 − δ fraction of k ∈ [K] satisfy the
condition that:

2H
ε1/8

H (σB
k ) ≤ 2H

ε
H(B | X)ρ

ε
.

Proof. Let ΠXB
OPT be the optimising operator in the definition of Hε

H(B | X), where we can assume without loss of
generality that ΠOPT is of the form

ΠOPT =
∑
x

|x⟩ ⟨x|X ⊗ΠB
x

where each ΠB
x satisfies the condition

0B ≤ ΠB
x ≤ IB.

We claim that
∣∣Tr [ΠOPT(ρ

XB − σXB)
]∣∣ ≤ 2ε. To see this, note that:∣∣Tr [ΠOPT(ρ

XB − σXB)
]∣∣

≤
∥∥ρXB − σXB

∥∥
1

≤2ε,

where the first inequality is by the definition of the 1-norm and the last inequality can be proved using a standard
hybrid argument. This immediately implies that:∑

x

QX(x) Tr [Πxσx]

= Tr
[
ΠOPTσ

XB
]

≥ Tr
[
ΠOPTρ

XB
]
− 2ε

≥ 1− 3ε.

Markov’s inequality then implies that there exists a set GOOD1 ⊆ X such that Pr
QX

[GOOD1] ≥ 1 −
√
3ε and for all

x ∈ GOOD1 it holds that:
Tr
[
Πxσ

B
x

]
≥ 1−

√
3ε.
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Since QX and PX are close in the 1-norm, this implies that Pr
PX

[GOOD1] ≥ 1−
√
4ε. Next, note that by definition,

∑
x

PX(x) Tr [Πx] = 2−Hε
H(B | X).

Again using Markov’s inequality, we see that there exists a set GOOD2 ⊆ X such that Pr
PX

[GOOD2] ≥ 1− ε and for all

x ∈ GOOD2 it holds that:

Tr [Πx] ≤
2H

ε
H (B | X)

ε
.

Therefore, we have identified a set GOODX := GOOD1
⋂

GOOD2 of probability at least 1−
√
5ε (under PX ) such that

for all x ∈ GOODX :

Tr
[
Πxσ

B
x

]
≥ 1−

√
3ε

Tr [Πx] ≤
2H

ε
H (B | X)

ε
.

Now, let us define the subset GOODK ⊆ [K] as follows:

GOODK :=
{
k
∣∣ f(k) = x, x ∈ GOODX

}
.

We then define the operator:
Π′KB :=

∑
k∈GOODK

|k⟩ ⟨k|K ⊗ΠB
f(k).

Then observe that :

Tr
[
Π

′KBσKB
]
=

∑
k∈GOODK

QK(k) Tr
[
Πf(k)σ

B
k

]
=

∑
x∈GOODX

∑
k:f(k)=x

QK(k) Tr
[
Πf(k)σ

B
k

]
=

∑
x∈GOODX

QX(x) Tr
[
Πxσ

B
x

]
≥ (1−

√
3ε) · Pr

QX

[GOODX ]

≥ 1− ε1/4,

where the last inequality uses the fact that the probabilities of any set under the distributions PX and QX can differ
by at most ε. Again, using Markov’s inequality we infer that there exists a subset NICEK ⊆ GOODK such that
Pr
QK

[NICEK ] ≥ 1− ε1/8, and for all k ∈ NICEK it holds that:

Tr
[
Πf(k)σ

B
k

]
≥ 1− ε1/8.

This implies that for all k ∈ NICEK , ΠB
k := ΠB

f(k) is a candidate for optimising the expression 2H
ε1/8

H (σB
k ). This

implies that, for all k ∈ NICEK :

2H
ε1/8

H (σB
k ) ≤ Tr

[
ΠB

k

]
= Tr

[
ΠB

x

]
where x = f(k)

≤ 2H
ε
H(B|X)

ε
since x ∈ GOODX .

Also note that since QK and Unif [K] are close by δ, it holds that Pr
Unif [K]

[NICEK ] ≥ 1 − ε1/8 − δ. This concludes

the proof.
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Proof of Lemma 6.8

Proof. It is not hard to see that the states∑
k,ℓ

QKL(k, ℓ) |k, ℓ⟩ ⟨k, ℓ|KL ⊗ σRB
f(k,ℓ) (Bob and Ref)

and ∑
k,ℓ

QKL(k, ℓ) |k, ℓ⟩ ⟨k, ℓ|KL ⊗ σBf(k,ℓ) (Bob)

both satisfy the requirements of Lemma A.1. For the state in Bob and Ref, we think of the correspondence B ← RB
and K ← KL with respect to the registers KB in Lemma A.1. Similarly, for the state in Bob the correspondence is
B ← B and K ← KL. Then note that the closeness of σRB

f(k,ℓ) and ρRB
f(k,ℓ) (for (k, ℓ) ∈ supp(QKL), implied by Fact

6.6) implies the closeness of the marginals σBf(k,ℓ) and ρBf(k,ℓ). Also, since QX(x) :=
∑

k,ℓ:f(k,ℓ)=x

QKL(k, ℓ), it holds

via Fact 6.5 that ∥PX −QX∥1 ≤ O(ε). Additionally, it also holds that the distribution QKL is close to the uniform
distribution on [KL] by O(ε1/2), as implied by Fact 6.7.

A subtle issue is that the expression in Fact 6.5 the distributionQL | k is supported on [L]
⋃
{⊥} for all k. However,

from [5] we know that the mass on this element is at mostO(ε) (for our choice of parameters) and can thus be removed
from the 1-norm expression with a penalty of at most O(ε). This allows us to run the argument above for only ℓ ̸= ⊥,
and the valifity of the closeness of the state σRB

f(k,ℓ) and ρRB
f(k,ℓ) holds.

We will first instantiate parameters (ε, δ) in Lemma A.1, then use Lemma A.1 twice. To that end, set δ ← O(ε1/2)
and ε← O(ε). Then, we first apply Lemma A.1 to the state in Bob and Ref to see that there exists a subset

S1 ⊆ [K]× [L]

with the property that
|S1| ≥ (1−O(ε1/8)) ·KL

and for all (k, ℓ) ∈ S1, it holds that

H
O(ε1/8)
H (RB | k, ℓ) ≤ HO(ε)

H (RB | X) +O(log
1

ε
).

Similarly, applying Lemma A.1 to Equation Bob, we see that there exists a set S2 ⊆ [K]× [L] such that

|S2| ≥ (1−O(ε1/8))KL

and for all (k, ℓ) ∈ S2 it holds that

H
O(ε1/8)
H (B | k, ℓ) ≤ HO(ε)

H (B | X) +O(log
1

ε
).

It holds then that for all (k, ℓ) in the set
S := S1

⋂
S2,

where
|S| ≥ (1−O(ε1/8))KL,

it holds that

H
O(ε1/8)
H (RB | k, ℓ) ≤ HO(ε)

H (RB | X) +O(log
1

ε
)

and

H
O(ε1/8)
H (B | k, ℓ) ≤ HO(ε)

H (B | X) +O(log
1

ε
).

This concludes the proof.
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Appendix B Proofs of Lemma 2.24 and 2.25

Proof of Lemma 2.24

Proof. Suppose ΠXB
OPT is the optimising operator that for the quantity Hε

H(B | X). Without loss of generality we can
assume that ΠOPT is of the following form:

ΠXB
OPT =

∑
x

|x⟩ ⟨x|X ⊗ΠB
x .

Then by definition ΠOPT satisfies the following optimisation problem:

min
{Πx}x : 0≤Πx≤I

∑
x

PX(x) Tr [Πx]∑
x

PX(x) Tr [Πx |vx⟩ ⟨vx|] ≥ 1− ε.

Let us define for every x ∈ X an operator:

Π′
x := Tr [Πx |vx⟩ ⟨vx|] |vx⟩ ⟨vx| ,

and
Π

′XB =:=
∑
x

|x⟩ ⟨x|X ⊗Π
′B
x .

It is clear that Tr
[
Π

′XBρXB
]
≥ 1 − ε and that

∑
x
PX(x) Tr

[
Π

′XB
]
≤ 1. This implies that Π

′XB is a candidate

optimiser for Hε
H(B | X) and thus:

Hε
H(B | X) ≤ 0.

This concludes the proof.

Proof of Lemma 2.25

Proof. We can assume without loss of generality that |A| ≤ |B| and that the optimising operator ΠXA
OPT is of the form:

ΠXA
OPT =

∑
x

|x⟩ ⟨x|X ⊗ΠA
x .

Let us fix x ∈ X . Let the corresponding |vx⟩AB have the following Schmidt decomposition:

|vx⟩AB =
∑
i

λi |ai⟩A |bi⟩B .

Let V A→B
x be an isometry defined by |ai⟩A → |bi⟩B for all i. Then, consider the following:

Tr
[
ΠXB

OPT ρ
XAB

]
=
∑
x

PX(x) Tr
[
ΠA

x |vx⟩ ⟨vx|
AB
]

=
∑
x

PX(x)
∑
i

λ2i Tr
[
ΠA

x |ai⟩ ⟨ai|
A
]

=
∑
x

PX(x)
∑
i

λ2i Tr
[
ΠA

x V
†
x |bi⟩ ⟨bi|

B Vx

]
=
∑
x

PX(x)
∑
i

λ2i Tr

[(
VxΠ

A
x V

†
x

)B
|bi⟩ ⟨bi|B

]
=
∑
x

PX(x) Tr

[(
VxΠ

A
x V

†
x

)B
|vx⟩ ⟨vx|AB

]
.
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Therefore, we can define an operator Π̃XB =
∑
x
PX(x) |x⟩ ⟨x| ⊗ Π̃B

x where for each x ∈ X , Π̃B
x :=

(
VxΠ

A
x V

†
x

)B
,

such that:

Tr
[
Π̃XBρXBρXB

]
=Tr

[
ΠXA

OPTρ
XAρXA

]
≥1− ε.

Therefore, Π̃XB is a candidate optimiser for the quantity Hε
H(B | X), which implies that:

Hε
H(B | X) ≤ Hε

H(A | X).

A similar analysis shows that:
Hε

H(A | X) ≤ Hε
H(B | X).

This concludes the proof.

Appendix C Proofs of Lemma 7.2 and Claim 7.3

C.1 Proof of Lemma 7.2

Proof. From Lemma 6.8, we know that the entropic inequalities in the statement of the lemma hold for at least
(1 − O(ε1/8)) fraction of all index pairs (k, ℓ). Define 11k,ℓ as the indicator that the entropic inequalities hold for the
fixed index pair (k, ℓ). Then, ∑

k,ℓ

1

KL
11k,ℓ ≥ (1−O(ε1/8)).

Define
probk :=

∑
k,ℓ

1

L
11k,ℓ

Then, it holds by Markov’s inequality that for (1− ε1/16) fraction of k’s,

PROBk ≥ 1− ε1/16.

We define the set T ′ to be that set of k’s where the above condition holds. Let k ∈ T ′. Then by the fact that probk is
an average of indicator functions, we can conclude that, for at least 1− ε1/16 fraction of ℓ’s in [L], it holds that

11k,ℓ = 1.

We define the set where the above condition holds to be NICEL | k. This concludes the proof.

C.2 Proof of Claim 7.3

Proof. Recall that Corollary 7.2 shows the existence of the set T ′ ⊆ [K] of size at least (1 − ε1/16)K. On the other
hand, Lemma 6.11 shows that the set T is of size at least (1 − O(ε1/32))K. This implies that |T

⋂
T ′| > 0. This

concludes the proof.
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