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I am broadly interested in randomized algorithms, classical and quantum information theory and combinatorics.
Currently I am working in two different areas, one of which stems from the study of entanglement transmission codes
in quantum information theory and the other from the design and analysis of algorithms which sample perfectly (zero
error in total variation) from some target distribution. Below, I give a brief overview of these topics and a brief
overview of my recent work related to these topics.

1 Single Shot Entanglement Transmission Over Quantum Networks
In the past 70 years, few fields of research have had as ubiquitous and as profound an impact on both theory
and practice as information and coding theory. Founded by Claude Shannon in his 1948 paper ‘A Mathematical
Theory of Communication’, information theory provides the mathematical toolbox for us to answer the following
questions:

• Given a noisy channel, what is the maximum rate at which information may be transmitted through it, so as
to allow unique decoding with a small probability of error.

• Given a data file, what is the maximum rate of compression achievable so that the original file may be recovered
from the compressed version with only a small loss.

Shannon provided the answer for both these questions and also showed the existence of encoding and decoding
schemes which achieve the best possible bounds in both scenarios. Unfortunately, Shannon’s constructions suffer
from two main caveats:

• The codes Shannon designed are not explicit as in efficient encoding and decoding schemes are not known for
them.

• They require an asymptotically infinite amount of resources (channel uses / samples from the source) to provide
meaningful guarantees.

Recently, the situation described above has been generalized in two important ways :

• Finite Blocklength and Single Shot Regime : One considers the far more practically feasible setting when
the amount of resources available are limited. For example, in the single shot regime, one is allowed only one
use of the noisy channel.

• Quantum Shannon Theory : The theory of quantum mechanics offers a far richer set of tools than is available
in the purely classical setting. It is only natural to consider whether one can perform information transmission,
storage and retrieval tasks based on the rules of quantum mechanics. Indeed, it is known that using quantum
mechanical tools we are able to perform certain information processing tasks which are impossible in the
classical world (superactivation of Holevo capacity [1], information locking [2]), etc.

I am interested in showing the existence of efficient coding and decoding techniques in this general framework, when
there are multiple parties (both senders and receivers) taking part in the protocol. To be specific, I am interested in
showing the existence of efficient entanglement transmission codes for general multi terminal channels. Entanglement
transmission is the task where the sender holds one half of an Einstein-Podolosky-Rosen (EPR) pair and sends one
half of it through a noisy channel. The protocol requires the receiver to be able to recover the transmitted half with
a small amount of error. At the end of the protocol, the sender and receiver manage to share entanglement.
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This task has major real world applications, including Quantum Key Distribution (QKD) and secret communication
which is secure against quantum attacks, to name a few.

While this problem has been studied extensively, both in the asymptotic iid and the single shot settings [3, 4, 5]
for the case of a single sender and a single receiver, very little is known for the case when multiple parties are
involved.

In this context, I would like to mention some recent results which I co-authored with my advisor Prof. Pranab Sen
and colleague Aditya Nema :

In the paper [6] we studied entanglement transmission over the multiple access channel (two senders one receiver),
when only one use of the channel is available. Prior to our work, entanglement transmission codes were known to exist
for this channel when asymptotically many copies of the channel were available. We established that entanglement
can be transmitted independently by the two senders to the receiver, even when only a single use of the channel
is allowed. Along the way, we generalized several foundational coding techniques to the fully quantum regime that
previously were only known in the classical regime such as rate splitting and successive cancellation. Our techniques
recover the best known bounds when asymptotically many uses of the channel are available for any amount of
pre-shared entanglement. In addition, the techniques in that paper seem to give the first non-trivial bounds for
entanglement transmission over the quantum interference channel, which has two senders and two receivers. The
task is for sender 1 to transmit entanglement to receiver 1 and the same for sender 2 and receiver 2. Previously, aside
from trivial bounds, nothing was known for entanglement transmission over this channel, even in the asymptotic iid
setting. An older version of this paper was accepted as a contributed talk at the Beyond IID 8, 2020 [7]. The current
version will appear in the proceedings of ISIT 2021.

In the paper [8] we asked whether there exists a multi sender decoupling theorem. Decoupling theorems [9] are
essential to multiple quantum protocols, including state merging [10], random subspace measurements, etc. However,
previously only a single sender single receiver version of the theorem was known in the literature. We showed the
existence of multi sender version of the decoupling theorem, which directly implies the existence of simultaneous
decoders for many multi terminal channels. Modulo a simultaneous smoothing conjecture (which remains open), this
would imply the best known results for entanglement transmission, even in the asymptotic iid setting. The results
in this work will appear in the proceedings of ISIT 2021.

A natural question that arises in connection to the techniques used in the works mentioned above is whether they
can be used to send classical information over a quantum multiple access channel in the presence of an eavesdropper.
Formally, the two senders want to send classical messages to the receiver independently, such that:

• Reliability : The receiver is able to decode each sender’s message with a high probability of success.

• Secrecy : The eavesdropper cannot distinguish among the message pairs that are transmitted through the
channel by the two senders.

This problem is potentially harder than the problem of sharing EPR pairs via the quantum MAC, simply because
the protocol should be able to guarantee secrecy against an arbitrary type of eavesdropper, and not only when the
eavesdropper is the purifying environment, which is the only kind of eavesdropper we need to consider while designing
entanglement transmission codes. Note also that this problem is a natural generalisation of the point to point wiretap
channel to the multiterminal setting.

In the paper [11] we give the first non-trivial bounds known for this problem in the one shot setting. The main
bottleneck in proving such a result is that one has to prove a distributed covering lemma, which is the heart of the
secrecy part of the protocol. We note that a version of this lemma was known in the folklore for some time. But
this version is unsatisfactory since it requires a simultaneous smoothing conjecture to give the best bounds in both
the one shot and asymptotic iid setting. We instead proved a novel variation of this distributed covering lemma,
which we informally refer to as a ’successive cancellation style covering lemma’, which allowed us to generalise our
bounds to the asymptotic iid setting without appealing to the smoothing conjecture. This work is currently under
submission at ITW 2021.

1.1 Future Research Focus
In the works mentioned till now we have been able to make progress towards a theory of information transmission
over multi terminal channels, with very few available resources. However, the encoding and decoding schemes we
have proposed still rely on a randomization argument. I will now focus my efforts towards making these constructions
efficient. Recently, efficient encoder constructions have been shown for the single sender single receiver case based
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on Arikan’s polar coding techniques [12]. An important caveat however is that efficient decoding is still unknown.
Furthermore, the polarisation phenomenon, which is at the heart of showing the existence of efficient encoders
and decoders in the classical regime are not well understood in the fully quantum regime. I will try to design
a fully quantum efficient encoding decoding scheme for entanglement transmission, by leveraging the polarisation
phenomenon. This in turn will imply efficient coding strategies for most multi terminal scenarios, bridging the gap
between theory and practice.

2 Perfect Sampling Algorithms
In this section we will change tracks from information and coding theory to the study of sampling algorithms, in
particular perfect sampling algorithms. Broadly, sampling algorithms are designed to sample from a distribution sup-
ported on some combinatorial structure such as k-colorings or the independent sets of a graph, either approximately
or perfectly (with zero error), in polynomial time.

As mentioned earlier, a perfect sampling algorithm samples from target distribution with zero error in total variation.
A specific example of a perfect sampling problem is as follows : We are given a graph G with number of vertices n
and max degree ∆. We are also given k colors. The problem is to produce a uniformly random proper coloring from
the set of all proper k colorings of G.

Another variant of a sampling problem is the problem of sampling from the hard core model: Given a graph G with
max degree ∆ and size n, and also given a parameter λ known as the fugacity, produce a sample from the following
distribution which is supported on the independent sets I ⊂ V of the graph:

I ∼ λ|I|∑
I
λ|I|

For the problem of sampling colorings, Jerrum showed that as long as k > 2∆, there exists an algorithm which
can sample from a distribution ε close in total variation to the uniform distribution on proper colorings, in time
polynomial in n. This variant of the sampling problem is referred to as approximate sampling, and has enjoyed a
great deal of attention from the sampling community.

However, I am interested in perfect sampling, since, for example, there might be situations where a perfect random
bit is necessary and an almost random bit, not matter how close to totally uniform, may not do the job. That perfect
sampling can be done at all is an amazing fact, have been shown for the first time by Propp and Wilson [13] in their
seminal paper. Subsequently, Huber[14] showed that there exists a perfect sampling algorithm for k-colorings as long
as k > O(∆2) . He also showed analogous bounds for the hard core model.

In this context I would like to describe a recent paper I authored with my colleague Siddharth Bhandari (TIFR).
In that paper [15], we showed that there exists a perfect sampling algorithm which produces a uniformly random
proper k-coloring of the given graph in polynomial time, as long as k > 3∆. This answered a long standing question
of whether the quadratic dependence on the max degree for the number of colors necessary to produce a uniformly
random coloring could be brought down to linear. This paper won the Danny Lewin Best Student Paper Award at
STOC 2020.

It is well known that it is hard to sample from the hard core distribution, when λ & e
∆ unless NP=RP [16]. Recently

it has been shown that Markov Chain Monte Carlo based algorithms can sample efficiently and approximately right
up to this critical value [17]. A similar result is not known for perfect sampling.

I along with my collaborators Siddharth Bhandari and Piyush Srivastava have been able to answer this question
for perfect sampling, albeit for a subclass of graphs with large (> O(log n)) degree. Our results also require some
assumptions on the girth of the graph, although our assumptions do not require the girth to be a function of the size
of the graph. The manuscript of this result is under preparation.

2.1 Future Research Focus
I am broadly interested in the following question :

A broader goal is to show a theorem of the sort ‘approximate sampling algorithms which use Markov Chain Monte
Carlo imply perfect sampling’. A long term goal of mine is to prove a theorem of this sort such that we can show
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the equivalence of MCMC methods and perfect sampling. Even a negation of this will give us important insight into
combinatorial structures and show separations between approximate and perfect sampling.

3 Conclusion
In summary, I am interested in designing efficient protocols for sending entanglement across different quantum
networks with a small amount of error. I have already shown the existence of protocols which achieve this goal across
various multi user quantum channels. I plan to work towards making these protocols efficient for use in real world
scenarios. I am also interested in perfect sampling algorithms. I have already provided an algorithm which produces
a uniformly random k-coloring for a bounded degree graph in poly time, given only linearly many colors. This result
closes the gap between perfect and approximate sampling of k-colorings which had persisted for some time. I am now
working towards showing the existence of an efficient algorithm which perfectly samples an independent set from the
hard core distribution, with a fugacity which is slightly smaller than the critical value.
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